965 resultados para Mouse Muscle
Resumo:
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which can induce mammary carcinomas in mice late in life by activation of proto-oncogenes after integration in their vicinity. Surprisingly, it requires a functional immune system to achieve efficient infection of the mammary gland. This requirement became clear when it was discovered that it has developed strategies to exploit the immune response. Instead of escaping immune detection, it induces a vigorous polyclonal T-B interaction which is required to induce a chronic infection. This is achieved by activating and then infecting antigen presenting cells (B cells), expressing a superantigen on their cell surface and triggering unlimited help by the large number of superantigen-specific T cells. The end result of this strong T-B interaction is the proliferation and differentiation of the infected B cells leading to their long term survival.
Resumo:
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.
Resumo:
Glycosyl-inositolphospholipid (GPL) anchoring structures are incorporated into GPL-anchored proteins immediately posttranslationally in the rough endoplasmic reticulum, but the biochemical and cellular constituents involved in this "glypiation" process are unknown. To establish whether glypiation could be achieved in vitro, mRNAs generated by transcription of cDNAs encoding two GPL-anchored proteins, murine Thy-1 antigen and human decay-accelerating factor (DAF), and a conventionally anchored control protein, polymeric-immunoglobulin receptor (IgR), were translated in a rabbit reticulocyte lysate. Upon addition of dog pancreatic rough microsomes, nascent polypeptides generated from the three mRNAs translocated into vesicles. Dispersal of the vesicles with Triton X-114 detergent and incubation of the hydrophobic phase with phosphatidylinositol-specific phospholipases C and D, enzymes specific for GPL-anchor structures, released Thy-1 and DAF but not IgR protein into the aqueous phase. The selective incorporation of phospholipase-sensitive anchoring moieties into Thy-1 and DAF but not IgR translation products during in vitro translocation indicates that rough microsomes are able to support and regulate glypiation.
Resumo:
This paper deals with current knowledge of the interrelationships between Schistosoma infection and malnutrition. It emphasizes the relevance of these investigations in the face of dynamic and evolving changes occurring in population diets and changes in the epidemiological patterns of schistosomiasis in endemic countries. The paper further discusses the basis for continuing the studies on this subject and the reasons why it represents a misunderstood association. This review also focuses on the cellular and humoral immune responses in the undernourished mouse model infected with Schistosoma mansoni, with updated information on the immune response in wild-type and iNOS knockout mice concerning soluble egg antigen specific antibodies and kinetics of IFN-γ, IL-4, IL-10 and IL-13 cytokines, in the chronic phase of Manson's schistosomiasis. There is indication that schistosome-infected undernourished mice are able to develop a humoral immune response, but antibody titres are much lower than in the control animals. Cytokine production (IFN-γ, IL-4, IL-10) is lower in the undernourished mice, but as infection progresses to the chronic phase its kinetics run an antagonistic course when compared to that of well-nourished animals. Marked variation in the secretion of IL-13 (a fibrogenic cytokine) could explain why undernourished mice do not develop liver "pipe-stem" fibrosis described in previous papers on well-nourished animals.
Resumo:
Superantigens (SAg) encoded by endogenous mouse mammary tumor viruses (Mtv) interact with the V beta domain of the T cell receptor (TcR-V beta). Presentation of Mtv SAg can lead to stimulation and/or deletion of the reactive T cells, but little is known about the quantitative aspects of SAg presentation. Although monoclonal antibodies have been raised against Mtv SAg, they have not been useful in quantitating SAg protein, which is present in very low amounts in normal cells. Alternative attempts to quantitate Mtv SAg mRNA expression are complicated by the fact that Mtv transcription occurs from multiple loci and in different overlapping reading frames. In this report we describe a novel competitive polymerase chain reaction assay which allows the locus-specific quantitation of SAg expression at the mRNA level in lymphocyte subsets from mouse strains with multiple endogenous Mtv loci. In B cells as well as T cells (CD4+ or CD8+), Mtv-6 SAg is expressed at the highest levels, followed by Mtv-7 SAg and (to a much lesser extent) Mtv-8,9. Consistent with functional Mtv-7 SAg presentation studies, we find that Mtv-7 SAg expression is higher in B cells than in CD8+ T cells and very low in the CD4+ subset. The overall hierarchy in Mtv SAg expression (i.e. Mtv-6 > Mtv-7 > Mtv 8,9) was also observed for mRNA isolated from neonatal thymus. Furthermore, the kinetics of intrathymic deletion of the corresponding TcR-V beta domains during ontogeny correlated with the levels of Mtv SAg expression. Collectively our data suggest that T cell responses to Mtv SAg are largely controlled by SAg expression levels on presenting cells.
Resumo:
In a prospective nonrandomized study, using each baby as his or her own control, we compared intracranial pressure (anterior fontanel pressure as measured with the Digilab pneumotonometer), cerebral perfusion pressure, BP, heart rate, transcutaneous Po2, and transcutaneous Pco2 before, during, and after endotracheal suctioning, with and without muscle paralysis, in 28 critically ill preterm infants with respiratory distress syndrome. With suctioning, there was a small but significant increase in intracranial pressure in paralyzed patients (from 13.7 [mean] +/- 4.4 mm Hg [SD] to 15.8 +/- 5.2 mm Hg) but a significantly larger (P less than .001) increase when they were not paralyzed (from 12.5 +/- 3.6 to 28.5 +/- 8.3 mm Hg). Suctioning led to a slight increase in BP with (from 45.3 +/- 9.1 to 48.0 +/- 8.7 mm Hg) and without muscle paralysis (from 45.1 +/- 9.4 to 50.0 +/- 11.7 mm Hg); but there was no significant difference between the two groups. The cerebral perfusion pressure in paralyzed infants did not show any significant change before, during, and after suctioning (31.5 +/- 9.1 mm Hg before v 32.0 +/- 8.7 mm Hg during suctioning), but without muscle paralysis cerebral perfusion pressure decreased (P less than .001) from 32.8 +/- 9.7 to 21.3 +/- 13.1 mm Hg. Suctioning induced a slight decrease in mean heart rate and transcutaneous Po2, but pancuronium did not alter these changes. There was no statistical difference in transcutaneous Pco2 before, during, and after suctioning with and without muscle paralysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.
Resumo:
PURPOSE: The potential of stem cells (SCs) as a source for cell-based therapy on a wide range of degenerative diseases and damaged tissues such as retinal degeneration has been recognized. Generation of a high number of retinal stem cells (RSCs) in vitro would thus be beneficial for transplantation in the retina. However, as cells in prolonged cultivation may be unstable and thus have a risk of transformation, it is important to assess the stability of these cells. METHODS: Chromosomal aberrations were analyzed in mouse RSC lines isolated from adult and from postnatal day (PN)1 mouse retinas. Moreover, selected cell lines were tested for anchorage-dependent proliferation, and SCs were transplanted into immunocompromised mice to assess the possibility of transformation. RESULTS: Marked aneuploidy occurred in all adult cell lines, albeit to different degrees, and neonatal RSCs were the most stable and displayed a normal karyotype until at least passage 9. Of interest, the level of aneuploidy of adult RSCs did not necessarily correlate with cell transformation. Only the adult RSC lines passaged for longer periods and with a higher dilution ratio underwent transformation. Furthermore, we identified several cell cycle proteins that might support the continuous proliferation and transformation of the cells. CONCLUSIONS: Adult RSCs rapidly accumulated severe chromosomal aberrations during cultivation, which led to cell transformation in some cell lines. The culture condition plays an important role in supporting the selection and growth of transformed cells.
Resumo:
Objective: Intimal hyperplasia (IH) is one of the leading causes of failure¦after vascular interventions. It involves the proliferation of smooth muscle¦cells (SMCs) and the production of extracellular fibrous matrix. Gap junctional¦communication, mediated by membrane connexins (Cx), participates to the¦control of proliferation and migration. In human and mice vessels, endothelial¦cells (ECs) express Cx37, Cx40 and Cx43, whereas SMCs are coupled by Cx43.¦We previously reported that Cx43 was increased in the SMCs of a human vein¦during the development of IH.¦In our experimental model of mice carotid artery ligation (CAL), luminal¦narrowing occurred by SMCs-rich neointima after 2-4 weeks of ligation.¦This experimental model of mice allows us to decipher the regulation of the¦cardiovascular connexins in the mouse.¦Methods: C57BL/6 mice were anesthetized and the left common carotid artery¦was dissected through a neck incision and ligated near the carotid bifurcation.¦The mice were then euthanized at 7, 14 and 28 days. Morphometric analyses¦were then performed with measurements of total area, lumen and intimal area¦and media thickness. Western blots, immunocytochemistry and quantitative¦RT-PCR were performed for Cx43, Cx40 and Cx37.¦Results: All animals recovered with no symptom of stroke. Morphometric¦analysis demonstrated that carotid ligation resulted in an initial increase (after¦7 days) of the total vessel area followed by its reduction (after 28 days). This¦phenomena was associated with a progressive increase in the intimal area and a¦consecutive decrease of the lumen. The media thickness was also increased after¦14 and 28 days. This neointima formation was associated to a marked increase¦in the expression of Cx43 at both protein and RNA levels. Concomitantly,¦Cx40 and Cx37 protein expression were reduced in the endothelium. This was¦confirmed by en face analyses showing reduced Cx37 and Cx40 levels in the¦endothelial cells covering the lesion.¦Conclusion: This study assessed the regulation of the cardiovascular connexins¦in the development of IH. This model will allow us to characterize the¦involvement of gap junctions in the IH. In turn, this understanding is¦instrumental for the development of new therapeutical tools, as well as for¦the evaluation of the effects of drugs and gene therapies of this disease for which¦there is no efficient therapy available.
Resumo:
BACKGROUND: Nineteen patients were evaluated after closure of intrathoracic esophageal leaks by a pediculated muscle flap onlay repair in the presence of mediastinal and systemic sepsis. METHODS: Intrathoracic esophageal leaks with mediastinitis and systemic sepsis occurred after delayed spontaneous perforations (n = 7) or surgical and endoscopic interventions (n = 12). Six patients presented with fulminant anastomotic leaks. Seven patients had previous attempts to close the leak by surgery (n = 4) or stenting (2) or both (n = 1). The debrided defects measured up to 2 x 12 cm or involved three quarters of the anastomotic circumference and were closed either by a full thickness diaphragmatic flap (n = 13) or a pediculated intrathoracically transposed extrathoracic muscle flap (n = 6). All patients had postoperative contrast esophagography between days 7 and 10 and an endoscopic evaluation 4 to 6 months after surgery. RESULTS: There was no 30-day mortality. During follow-up (4 to 42 months), 16 patients (84%) revealed functional and morphological restoration of the esophagointestinal integrity without further interventions. One patient required serial dilatations for a stricture, and 1 underwent temporary stenting for a persistent fistula; both patients had normal control endoscopy during follow-up. A third patient requiring permanent stenting for stenosis died from gastrointestinal bleeding due to stent erosion during follow-up. CONCLUSIONS: Intrathoracic esophageal leaks may be closed efficiently by a muscle flap onlay approach in the presence of mediastinitis and where a primary repair seems risky. The same holds true for fulminant intrathoracic anastomotic leaks after esophagectomy or other surgical interventions at the gastroesophageal junction.
Resumo:
Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.
Resumo:
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 binds single-strand DNA ends of 3'-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca(2+) alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.
Resumo:
The actual geographic distribution of the two sibling mouse-eared bat species Myotis myotis and Myotis blythii, which occur widely sympatrically in the western Palaearctic region, remains largely controversial. This concerns particularly the specific attribution of marginal populations from the Mediterranean islands and from adjacent areas of North Africa and Asia, which are morphologically intermediate between continental M. myotis and M. blythii from Europe. This study attempts to clarify this question by using four different approaches: cranial morphology, external morphology, genetics and trophic ecology. The three latter methods show unambiguously that North Africa, Malta, Sardinia and Corsica are presently inhabited by monospecific populations of M. myotis. In contrast, cranial morphometrics do not yield conclusive results. These results contradict all recent studies, which attribute North African and Maltese mouse-eared bats to M. blythii and consider that Sardinia and Corsica harbour sympatric populations of the two species. As concerns south-eastern populations, doubts are also expressed about the attribution of the subspecific taxon omari which may actually refer to M. myotis instead of M. blythii. Protein electrophoresis is presently the only absolute method available for determining M. myotis and M. blythii throughout their distribution ranges. However, species identification may be approached by relying on less sophisticated morphometrical methods as presented in this study. Species-specific habitat specializations are probably responsible for the differences observed between the geographic distributions of M. myotis and M. blythii, as they provide a logical groundwork for a coherent model of speciation for these two bat species.