838 resultados para Modeling Rapport Using Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les logiciels actuels sont de grandes tailles, complexes et critiques. Le besoin de qualité exige beaucoup de tests, ce qui consomme de grandes quantités de ressources durant le développement et la maintenance de ces systèmes. Différentes techniques permettent de réduire les coûts liés aux activités de test. Notre travail s’inscrit dans ce cadre, est a pour objectif d’orienter l’effort de test vers les composants logiciels les plus à risque à l’aide de certains attributs du code source. À travers plusieurs démarches empiriques menées sur de grands logiciels open source, développés avec la technologie orientée objet, nous avons identifié et étudié les métriques qui caractérisent l’effort de test unitaire sous certains angles. Nous avons aussi étudié les liens entre cet effort de test et les métriques des classes logicielles en incluant les indicateurs de qualité. Les indicateurs de qualité sont une métrique synthétique, que nous avons introduite dans nos travaux antérieurs, qui capture le flux de contrôle ainsi que différentes caractéristiques du logiciel. Nous avons exploré plusieurs techniques permettant d’orienter l’effort de test vers des composants à risque à partir de ces attributs de code source, en utilisant des algorithmes d’apprentissage automatique. En regroupant les métriques logicielles en familles, nous avons proposé une approche basée sur l’analyse du risque des classes logicielles. Les résultats que nous avons obtenus montrent les liens entre l’effort de test unitaire et les attributs de code source incluant les indicateurs de qualité, et suggèrent la possibilité d’orienter l’effort de test à l’aide des métriques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leicestershire Adult Learning Service’s lead tutor Sarabjit Borrill has been using blended learning effectively in apprentice training for several years. Building on what she has learned in that time, she made 2015/ 16 the year to explore similar approaches with Skills for life students studying GCSE English.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dissertation submitted in fulfillment of the requirements to the degree of Master in Computer Science and Computer Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämä diplomityö tarkastelee pelaajatyyppien ja pelaajamotivaatioiden tunnistamista videopeleissä. Aiempi tutkimus tuntee monia pelaajatyyppien malleja, mutta niitä ei ole liiemmin sovellettu käytäntöön peleissä. Tässä työssä suoritetaan systemaattinen kirjallisuuskartoitus erilaisista pelaajatyyppien malleista, jonka pohjalta esitetään useita pelaajien luokittelutapoja. Lisäksi toteutetaan tapaustutkimus, jossa kirjallisuuden pohjalta valitaan pelaajien luokittelumalli ja testataan mallia käytännössä tunnistamalla pelaajatyyppejä data-analytiikan avulla reaaliaikaisessa strategiapelissä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nigerian scam, also known as advance fee fraud or 419 scam, is a prevalent form of online fraudulent activity that causes financial loss to individuals and businesses. Nigerian scam has evolved from simple non-targeted email messages to more sophisticated scams targeted at users of classifieds, dating and other websites. Even though such scams are observed and reported by users frequently, the community’s understanding of Nigerian scams is limited since the scammers operate “underground”. To better understand the underground Nigerian scam ecosystem and seek effective methods to deter Nigerian scam and cybercrime in general, we conduct a series of active and passive measurement studies. Relying upon the analysis and insight gained from the measurement studies, we make four contributions: (1) we analyze the taxonomy of Nigerian scam and derive long-term trends in scams; (2) we provide an insight on Nigerian scam and cybercrime ecosystems and their underground operation; (3) we propose a payment intervention as a potential deterrent to cybercrime operation in general and evaluate its effectiveness; and (4) we offer active and passive measurement tools and techniques that enable in-depth analysis of cybercrime ecosystems and deterrence on them. We first created and analyze a repository of more than two hundred thousand user-reported scam emails, stretching from 2006 to 2014, from four major scam reporting websites. We select ten most commonly observed scam categories and tag 2,000 scam emails randomly selected from our repository. Based upon the manually tagged dataset, we train a machine learning classifier and cluster all scam emails in the repository. From the clustering result, we find a strong and sustained upward trend for targeted scams and downward trend for non-targeted scams. We then focus on two types of targeted scams: sales scams and rental scams targeted users on Craigslist. We built an automated scam data collection system and gathered large-scale sales scam emails. Using the system we posted honeypot ads on Craigslist and conversed automatically with the scammers. Through the email conversation, the system obtained additional confirmation of likely scam activities and collected additional information such as IP addresses and shipping addresses. Our analysis revealed that around 10 groups were responsible for nearly half of the over 13,000 total scam attempts we received. These groups used IP addresses and shipping addresses in both Nigeria and the U.S. We also crawled rental ads on Craigslist, identified rental scam ads amongst the large number of benign ads and conversed with the potential scammers. Through in-depth analysis of the rental scams, we found seven major scam campaigns employing various operations and monetization methods. We also found that unlike sales scammers, most rental scammers were in the U.S. The large-scale scam data and in-depth analysis provide useful insights on how to design effective deterrence techniques against cybercrime in general. We study underground DDoS-for-hire services, also known as booters, and measure the effectiveness of undermining a payment system of DDoS Services. Our analysis shows that the payment intervention can have the desired effect of limiting cybercriminals’ ability and increasing the risk of accepting payments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hand detection on images has important applications on person activities recognition. This thesis focuses on PASCAL Visual Object Classes (VOC) system for hand detection. VOC has become a popular system for object detection, based on twenty common objects, and has been released with a successful deformable parts model in VOC2007. A hand detection on an image is made when the system gets a bounding box which overlaps with at least 50% of any ground truth bounding box for a hand on the image. The initial average precision of this detector is around 0.215 compared with a state-of-art of 0.104; however, color and frequency features for detected bounding boxes contain important information for re-scoring, and the average precision can be improved to 0.218 with these features. Results show that these features help on getting higher precision for low recall, even though the average precision is similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human immune system. DCs perform the vital role of combining signals from the host tissue and correlate these signals with proteins known as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo se enfoca en la implementación de un detector de arrecife de coral de desempeño rápido que se utiliza para un vehículo autónomo submarino (Autonomous Underwater Vehicle, AUV, por sus siglas en inglés). Una detección rápida de la presencia de coral asegura la estabilización del AUV frente al arrecife en el menor tiempo posible, evitando colisiones con el coral. La detección de coral se hace en una imagen que captura la escena que percibe la cámara del AUV. Se realiza una clasificación píxel por píxel entre dos clases: arrecife de coral y el plano de fondo que no es coral. A cada píxel de la imagen se le asigna un vector característico, el mismo que se genera mediante el uso de filtros Gabor Wavelets. Éstos son implementados en C++ y la librería OpenCV. Los vectores característicos son clasificados a través de nueve algoritmos de máquinas de aprendizaje. El desempeño de cada algoritmo se compara mediante la precisión y el tiempo de ejecución. El algoritmo de Árboles de Decisión resultó ser el más rápido y preciso de entre todos los algoritmos. Se creó una base de datos de 621 imágenes de corales de Belice (110 imágenes de entrenamiento y 511 imágenes de prueba).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo determinar quais variáveis dimensionais da folha são mais adequadas para utilização na estimativa da área foliar do antúrio (Anthurium andraeanum), cv. Apalai, por meio de equação de regressão linear, e comparar o desempenho de diferentes funções de regressão obtidas com o uso de aprendizado de máquina (AM). A variável que melhor estimou a área foliar foi o produto das dimensões lineares (comprimento e largura), CxL, sendo a equação proposta Af = 0.9672 *C x L, com coeficiente de determinação (R²) de 0,99. Verificou-se, também, com o uso de AM, que as funções lineares são mais adequadas para a estimação da área foliar dessa espécie vegetal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.