1000 resultados para Modelagem estrutural interpretativa
Resumo:
Summary In this work the structural dependence of plastic rotation capacity in RC beams is evaluated using the Finite Element Method. The objective is to achieve a better understanding of the non-linear behavior of reinforced concrete members and perform extensive parameter studies, using a rational model developed by Bigaj [1] to analyze the phenomenon of plastic rotation capacity in reinforced concrete members. It is assumed that only bending failure is relevant due to sufficient member resistance against shear and torsion. The paper begins with the physical and theoretical background of the phenomenon of plastic hinge development in RC structures. Special emphasis is laid on the issue of structural dependence of deformation capacity of plastic hinges in RC members. Member size dependence and influence of properties of construction materials were emphasized as well. The essential components of the Bigajs model for calculating the plastic rotation capacity are discussed. The behaviour of the plastic hinge is analysed taking into account the strain localisation in the damage zones of the hinge region. The Fictitious Crack Model (FCM) and the Compressive Damage Zone Model (CDZ) are adopted in a Fracture Mechanics approach to model the behaviour of concrete in tension and compression, respectively. The approach is implemented in FEMOOP, a FEM in-house solver under development, and applied to evaluate ductility in 2D beams. The models were generated with GiD, a pre-processor and post-processor developed by CIMNE, and analyzed with the capabilities implemented in FEMOOP. © Universitat Politècnica de Catalunya, Barcelona, España 2010.
Resumo:
Latex is the main product extracted from rubber trees (Hevea brasiliensis). In Brazil, at the end of the production cycle of latex, the wood of rubber tree is traditionally used for energy purposes, but several international studies have reported consolidated practices of adding value to it. The objective of this paper was to evaluate the quality of wood and classify it structurally based on its mechanical properties. Six 20-year-old trees of the clone GT 1 of rubber tree proceeding from Itajobi, State of Sao Paulo, Brazil were sampled. Reduced dimensions specimens in the radial direction of the wood were produced to evaluate the quality by compression parallel to the grain, static bending and Janka hardness tests. Two specimens, one from the lower log (since the ground up to breast height) and one from the higher log (from breast height up to 2.50 m) were produced for structural classification of the wood based on the characteristic strength in compression parallel to the grain (NBR 7190 norm, 1997). The wood was classified as C40 (fc0k ≥ 40 MPa) class. Results revealed that the strength was not statistically different in the radial direction (except for the Janka hardness), though tending to increase from pith to bark.
Resumo:
The sediment production in river basins is an important aspect for planning the land use. Mathematical models are useful tools for analyzing the problem by providing speed, convenience and flexibility to the simulations of current conditions and future. In this article we evaluate a methodology to simulate the sediment production combining the MUSLE, a hydrologic model (ABC) and a GIS in different scenarios of land use. The models used showed good performance for purposes of planning land use, as well as for agricultural and environmental planning.
Resumo:
Versión en inglés y en español disponibles en Biblioteca
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)