887 resultados para Mites -- Ecology
Resumo:
The dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest. Thus, the objective of this work was to investigate the voluntary dispersal mechanisms of this mite. The hypothesis that the coconut mite disperses by walking, phoresis or wind were tested. The coconut mite was shown to be able to walk short distances between fruits of the same bunch or between bunches of the same plant. Phoresis on insects of the orders Hymenoptera (Apidae), Coleoptera (Curculionidae) and Lepidoptera (Phycitidae) was evaluated in the laboratory and in the field. Although in the laboratory mites were shown to be able to climb onto honeybees, field investigations failed to show these insects as important carriers of the pest, corroborating findings of previous works; however, both laboratory and field investigations suggested the curculionid Parisoschoenus obesulus Casey to be able to transport the coconut mite between plants. Similarly, laboratory and field investigations suggested wind to be important in the dispersal of the coconut mite between plants.
Resumo:
Surveys were conducted in Brazil, Benin and Tanzania to collect predatory mites as candidates for control of the coconut mite Aceria guerreronis Keifer, a serious pest of coconut fruits. At all locations surveyed, one of the most dominant predators on infested coconut fruits was identified as Neoseiulus baraki Athias-Henriot, based on morphological similarity with regard to taxonomically relevant characters. However, scrutiny of our own and published descriptions suggests that consistent morphological differences may exist between the Benin population and those from the other geographic origins. In this study, we combined three methods to assess whether these populations belong to one species or a few distinct, yet closely related species. First, multivariate analysis of 32 morphological characters showed that the Benin population differed from the other three populations. Second, DNA sequence analysis based on the mitochondrial cytochrome oxidase subunit I (COI) showed the same difference between these populations. Third, cross-breeding between populations was unsuccessful in all combinations. These data provide evidence for the existence of cryptic species. Subsequent morphological research showed that the Benin population can be distinguished from the others by a new character (not included in the multivariate analysis), viz. the number of teeth on the fixed digit of the female chelicera.
Resumo:
This article documents the addition of 171 microsatellite marker loci and 27 pairs of single nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bombus pauloensis, Cephalorhynchus heavisidii, Cercospora sojina, Harpyhaliaetus coronatus, Hordeum vulgare, Lachnolaimus maximus, Oceanodroma monteiroi, Puccinia striiformis f. sp. tritici, Rhea americana, Salmo salar, Salmo trutta, Schistocephalus solidus, Sousa plumbea and Tursiops aduncus. These loci were cross-tested on the following species: Aquila heliaca, Bulweria bulwerii, Buteo buteo, Buteo swainsoni, Falco rusticolus, Haliaeetus albicilla, Halobaena caerulea, Hieraaetus fasciatus, Oceanodroma castro, Puccinia graminis f. sp. Tritici, Puccinia triticina, Rhea pennata and Schistocephalus pungitii. This article also documents the addition of 27 sequencing primer pairs for Puffinus baroli and Bulweria bulwerii and cross-testing of these loci in Oceanodroma castro, Pelagodroma marina, Pelecanoides georgicus, Pelecanoides urinatrix, Thalassarche chrysostoma and Thalassarche melanophrys.
Resumo:
In this study alpha and beta diversity patterns of five leaf litter arthropod groups (ants, predatory ants, oribatid mites, spiders and other arachnids) were described and compared in 39 sampling patches of a transformed landscape in southwestern Colombia, that represented five vegetation types: secondary forest, riparian forest, giant bamboo forest, pasture and sugarcane crop. It was also assessed whether some taxa could be used as diversity surrogates. A total of 6,765 individuals grouped in 290 morphospecies were collected. Species richness in all groups was lower in highly transformed vegetation types (pasture, sugarcane crop) than in native ones (forests). In contrast, there were no clear tendencies of beta diversity among vegetation types. Considering sampling patches, 0.1-42% of the variation in alpha diversity of one taxonomic group could be explained from the alpha diversity of another, and 0.2-33% of the variation of beta diversity of a given taxon was explained by that in other groups. Contrary to recent findings, we concluded that patterns of alpha diversity are more congruent than patterns of beta diversity. This fact could be attributed to a sampling effect that promotes congruence in alpha diversity and to a lack of a clear regional ecological gradient that could promote congruent patterns of beta diversity. We did not find evidence for an ideal diversity surrogate although diversity patterns of predatory ants had the greatest congruencies. These results support earlier multi-taxon evaluations in that conservation planning should not be based on only one leaf litter arthropod group.
Resumo:
This study aims to analyse the degree of completeness of world inventory of the mite family Phytoseiidae and the factors that might determine the process of species description. The world data set includes 2,122 valid species described from 1839 to 2010. Species accumulation curves were analysed. The effect of localisation (latitude ranges) and body size on the species description patterns over space and time was assessed. A low proportion of species seems remain to be described, but this trend could be explained by a critical reduction in the number of specialists dedicated to the study of those mites. In addition, this trend refers to the areas where phytoseiids have been well studied around the world, and it may change considerably if the study of these mites would be intensified in some areas. The number of newly described species is lower near the tropics, and their body size is also smaller. Differences in body size were noted between the three sub-families of Phytoseiidae, the highest mean body lengths of adult females being observed for Amblyseiinae, the most diverse family. In the future, collections would have certainly to take into consideration such conclusions for instance in using more adequate optical equipment especially for field collections. The decrease in the number of phytoseiid mite described was confirmed and the factors that could explain such a trend are discussed. Information for improving further inventories is provided and discussed, especially in relation to sampling localization and study methods.
Resumo:
Biological invasions are an important issue of global change and an increased understanding of invasion processes is of crucial importance for both conservation managers and international trade. In this thesis, I have studied the invasion of the brown seaweed Fucus evanescens, to investigate the fate and effect of a perennial, habitat-forming seaweed introduced to a coastal ecosystem. A long-term study of the spread of F. evanescens in Öresund (southern Sweden) showed that the species was able to expand its range quickly during the first 20 years after the introduction, but that the expansion has been slow during the subsequent 30 years. Both in Öresund and in Skagerrak, the species is largely restricted to sites where native fucoids are scarce. Laboratory experiments showed that the restricted spread of F. evanescens cannot be explained by the investigated abiotic factors (wave exposure and salinity), although salinity restricts the species from spreading into the Baltic Sea. Neither did I find evidence for that herbivores or epibiota provide biotic resistance to the invader. On the contrary, F. evanescens was less consumed by native herbivores, both compared to the native fucoids and to F. evanescens populations in its native range, and little overgrown by epiphytes. Instead, the restricted spread may be due to competition from native seaweeds, probably by pre-occupation of space, and the establishment has probably been facilitated by disturbance. The studies provided little support for a general enemy release in introduced seaweeds. The low herbivore consumption of F. evanescens in Sweden could not be explained by release from specialist herbivores. Instead, high levels of chemical anti-herbivore defence metabolites (phlorotannins) could explain the pattern of herbivore preference for different fucoids. Likewise, the low epibiotic colonisation of F. evanescens plants could be explained by high resistance to epibiotic survival. This shows that colonisation of invading seaweeds by native herbivores and epibionts depends on properties of the invading species. The large differences between fucoid species in their quality as food and habitat for epibionts and herbivores imply that invasions of such habitat-forming species may have a considerable effect on a number of other species in shallow coastal areas. However, since F. evanescens did not exclude other fucoids in its new range, its effect on the recipient biota is probably small.
Resumo:
Institut de Ciències del Mar (ICM-CSIC). Doctorado en oceanografía. Con mención de Calidad de la ANECA
Resumo:
Programa de oceanografía
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.