945 resultados para Min Jiang
Resumo:
Variable Speed Limits (VSL) is an Intelligent Transportation Systems (ITS) control tool which can enhance traffic safety and which has the potential to contribute to traffic efficiency. Queensland's motorways experience a large volume of commuter traffic in peak periods, leading to heavy recurrent congestion and a high frequency of incidents. Consequently, Queensland's Department of Transport and Main Roads have considered deploying VSL to improve safety and efficiency. This paper identifies three types of VSL and three applicable conditions for activating VSL on for Queensland motorways: high flow, queuing and adverse weather. The design objectives and methodology for each condition are analysed, and micro-simulation results are presented to demonstrate the effectiveness of VSL.
Resumo:
The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.
Resumo:
We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.
Resumo:
Objective: Simvastatin has been shown to enhance osseointegration of pure titanium implants in osteoporotic rats. This study aimed to evaluate the relationship between the serum level of bone formation markers and the osseointegration of pure titanium implants in osteoporotic rats treated with simvastatin. Materials and methods: Fifty-four female Sprague Dawley rats, aged 3 months old, were randomly divided into three groups: Sham-operated group (SHAM; n=18), ovariectomized group (OVX; n=18), and ovariectomized with Simvastatin treatment group (OVX+SIM; n=18). Fifty-six days after ovariectomy, screw-shaped titanium implants were inserted into the tibiae. Simvastatin was administered orally at 5mg/kg each day after the placement of the implant in the OVX+SIM group. The animals were sacrificed at either 28 or 84 days after implantation and the undecalcified tissue sections were processed for histological analysis. Total alkaline phosphatase (ALP), bone specific alkaline phosphatase (BALP) and bone Gla protein (BGP) were measured in all animal sera collected at the time of euthanasia and correlated with the histological assessment of osseointegration. Results: The level of ALP in the OVX group was higher than the SHAM group at day 28, with no differences between the three groups at day 84. The level of BALP in the OVX+SIM group was significantly higher than both OVX and SHAM groups at days 28 and 84. Compared with day 28, the BALP level of all three groups showed a significant decrease at day 84. There were no significant differences in BGP levels between the three groups at day 28, but at day 84 the OVX+SIM group showed significantly higher levels than both the OVX and SHAM groups. There was a significant increase in BGP levels between days 28 and 84 in the OVX+SIM group. The serum bone marker levels correlated with the histological assessment showing reduced osseointegration in the OVX compared to the SHAM group which is subsequently reversed in the OVX+SIM group.
Resumo:
Mechanical damages such as bruising, collision and impact during food processing stages diminish quality and quantity of productions as well as efficiency of operations. Studying mechanical characteristics of food materials will help to enhance current industrial practices. Mechanical properties of fruits and vegetables describe how these materials behave under loading in real industrial operations. Optimizing and designing more efficient equipments require accurate and precise information of tissue behaviours. FE modelling of food industrial processes is an effective method of studying interrelation of variables during mechanical operation. In this study, empirical investigation has been done on mechanical properties of pumpkin peel. The test was a part of FE modelling and simulation of mechanical peeling stage of tough skinned vegetables. The compression test has been conducted on Jap variety of pumpkin. Additionally, stress strain curve, bio-yield and toughness of pumpkin skin have been calculated. The required energy for reaching bio-yield point was 493.75, 507.71 and 451.71 N.mm for 1.25, 10 and 20 mm/min loading speed respectively. Average value of force in bio-yield point for pumpkin peel was 310 N.
Resumo:
Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.
Resumo:
High levels of sitting have been linked with poor health outcomes. Previously a pragmatic MTI accelerometer data cut-point (100 count/min-1) has been used to estimate sitting. Data on the accuracy of this cut-point is unavailable. PURPOSE: To ascertain whether the 100 count/min-1 cut-point accurately isolates sitting from standing activities. METHODS: Participants fitted with an MTI accelerometer were observed performing a range of sitting, standing, light & moderate activities. 1-min epoch MTI data were matched to observed activities, then re-categorized as either sitting or not using the 100 count/min-1 cut-point. Self-report demographics and current physical activity were collected. Generalized estimating equation for repeated measures with a binary logistic model analyses (GEE), corrected for age, gender and BMI, were conducted to ascertain the odds of the MTI data being misclassified. RESULTS: Data were from 26 healthy subjects (8 men; 50% aged <25 years; mean BMI (SD) 22.7(3.8)m/kg2). MTI sitting and standing data mode was 0 count/min-1, with 46% of sitting activities and 21% of standing activities recording 0 count/min-1. The GEE was unable to accurately isolate sitting from standing activities using the 100 count/min-1 cut-point, since all sitting activities were incorrectly predicted as standing (p=0.05). To further explore the sensitivity of MTI data to delineate sitting from standing, the upper 95% confidence interval of the mean for the sitting activities (46 count/min-1) was used to re-categorise the data; this resulted in the GEE correctly classifying 49% of sitting, and 69% of standing activities. Using the 100 count/min-1 cut-point the data were re-categorised into a combined ‘sit/stand’ category and tested against other light activities: 88% of sit/stand and 87% of light activities were accurately predicted. Using Freedson’s moderate cut-point of 1952 count/min-1 the GEE accurately predicted 97% of light vs. 90% of moderate activities. CONCLUSION: The distributions of MTI recorded sitting and standing data overlap considerably, as such the 100 count/min -1 cut-point did not accurately isolate sitting from other static standing activities. The 100 count/min -1 cut-point more accurately predicted sit/stand vs. other movement orientated activities.
Resumo:
Acute exercise has been shown to exhibit different effects on human sensorimotor behavior; however, the causes and mechanisms of the responses are often not clear. The primary aim of the present study was to determine the effects of incremental running until exhaustion on sensorimotor performance and adaptation in a tracking task. Subjects were randomly assigned to a running group (RG), a tracking group (TG), or a running followed by tracking group (RTG), with 10 subjects assigned to each group. Treadmill running velocity was initially set at 2.0 m s− 1, increasing by 0.5 m s− 1 every 5 min until exhaustion. Tracking consisted of 35 episodes (each 40 s) where the subjects' task was to track a visual target on a computer screen while the visual feedback was veridical (performance) or left-right reversed (adaptation). Resting electroencephalographic (EEG) activity was recorded before and after each experimental condition (running, tracking, rest). Tracking performance and the final amount of adaptation did not differ between groups. However, task adaptation was significantly faster in RTG compared to TG. In addition, increased alpha and beta power were observed following tracking in TG but not RTG although exhaustive running failed to induce significant changes in these frequency bands. Our results suggest that exhaustive running can facilitate adaptation processes in a manual tracking task. Attenuated cortical activation following tracking in the exercise condition was interpreted to indicate cortical efficiency and exercise-induced facilitation of selective central processes during actual task demands.
Resumo:
The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) −1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.
Resumo:
The performance and electron recombination kinetics of dye-sensitized solar cells based on TiO2 films consisting of one-dimensional nanorod arrays (NR-DSSCs) which are sensitized with dye N719, C218 and D205 respectively have been studied. It has been found that the best efficiency is obtained with the dye C218 based NR-DSSCs, benefiting from a 40% higher short-circuit photocurrent density. However, the open circuit photovoltage of the N719 based cell is 40 mV higher than that of the organic dye C218 and D205 based devices. Investigation of the electron recombination kinetics of the NR-DSSCs has revealed that the effective electron lifetime, τn, of the N719 based NR-DSSC is the lowest whereas the τn of the C218 based NR-DSSC is the highest among the three dyes. The higher Voc with the N719 based NR-DSSC is originated from the more negative energy level of the conduction band of the TiO2 film. In addition, in comparison to the DSSCs with conventional nanocrystalline particles based TiO2 films, the NR-DSSCs have shown over two orders of magnitude higher τn when employing N719 as the sensitizer. Nevertheless, the τn of the DSSCs with the C218 based nanorod arrays is only ten-fold higher than the that of the nanoparticles based devices. The remarkable characteristic of the dye C218 in suppressing the electron recombination of DSSCs is discussed.
Resumo:
This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.
Resumo:
Web service technology is increasingly being used to build various e-Applications, in domains such as e-Business and e-Science. Characteristic benefits of web service technology are its inter-operability, decoupling and just-in-time integration. Using web service technology, an e-Application can be implemented by web service composition — by composing existing individual web services in accordance with the business process of the application. This means the application is provided to customers in the form of a value-added composite web service. An important and challenging issue of web service composition, is how to meet Quality-of-Service (QoS) requirements. This includes customer focused elements such as response time, price, throughput and reliability as well as how to best provide QoS results for the composites. This in turn best fulfils customers’ expectations and achieves their satisfaction. Fulfilling these QoS requirements or addressing the QoS-aware web service composition problem is the focus of this project. From a computational point of view, QoS-aware web service composition can be transformed into diverse optimisation problems. These problems are characterised as complex, large-scale, highly constrained and multi-objective problems. We therefore use genetic algorithms (GAs) to address QoS-based service composition problems. More precisely, this study addresses three important subproblems of QoS-aware web service composition; QoS-based web service selection for a composite web service accommodating constraints on inter-service dependence and conflict, QoS-based resource allocation and scheduling for multiple composite services on hybrid clouds, and performance-driven composite service partitioning for decentralised execution. Based on operations research theory, we model the three problems as a constrained optimisation problem, a resource allocation and scheduling problem, and a graph partitioning problem, respectively. Then, we present novel GAs to address these problems. We also conduct experiments to evaluate the performance of the new GAs. Finally, verification experiments are performed to show the correctness of the GAs. The major outcomes from the first problem are three novel GAs: a penaltybased GA, a min-conflict hill-climbing repairing GA, and a hybrid GA. These GAs adopt different constraint handling strategies to handle constraints on interservice dependence and conflict. This is an important factor that has been largely ignored by existing algorithms that might lead to the generation of infeasible composite services. Experimental results demonstrate the effectiveness of our GAs for handling the QoS-based web service selection problem with constraints on inter-service dependence and conflict, as well as their better scalability than the existing integer programming-based method for large scale web service selection problems. The major outcomes from the second problem has resulted in two GAs; a random-key GA and a cooperative coevolutionary GA (CCGA). Experiments demonstrate the good scalability of the two algorithms. In particular, the CCGA scales well as the number of composite services involved in a problem increases, while no other algorithms demonstrate this ability. The findings from the third problem result in a novel GA for composite service partitioning for decentralised execution. Compared with existing heuristic algorithms, the new GA is more suitable for a large-scale composite web service program partitioning problems. In addition, the GA outperforms existing heuristic algorithms, generating a better deployment topology for a composite web service for decentralised execution. These effective and scalable GAs can be integrated into QoS-based management tools to facilitate the delivery of feasible, reliable and high quality composite web services.
Resumo:
Background Caring for a child with a disability can be a unique and challenging experience, with families often relying on informal networks for support. Often, grandparents are key support resources, yet little is known about their roles and experiences. Reporting on data collected in a larger Australian study, this article explores grandparents' experiences of caring for a child with a disability and the impact on their family relationships and quality of life. Method A qualitative purposive sampling design was utilised; semi-structured interviews were conducted with 22 grandparents (17 women, 5 men) of children with a disability. Grandparents ranged in age from 55 to 75 years old and lived within a 90-min drive of Brisbane, Australia. Interviews were transcribed and responses analysed using a thematic approach, identifying categories, themes and patterns. Findings Four key themes characterised grandparents' views about their role in the family: holding own emotions (decision to be positive), self-sacrifice (decision to put family needs first), maintaining family relationships (being the ‘go-between’) and quality of life for family in the future (concerns about the future). Conclusions Grandparents are central to family functioning and quality of life, but this contribution comes with a significant cost to their own personal well-being. Implications for policy, practice and research are discussed, particularly grandparents' fear that their family could not cope without their support.
Resumo:
A new accelerometer, the Kenz Lifecorder EX (LC; Suzuken Co. Ltd, Nagoya, Japan), offers promise as a feasible monitor alternative to the commonly used Actigraph (AG: Actigraph LLC, Fort Walton Beach, FL). Purpose: This study compared the LC and AG accelerometers and the Yamax SW-200 pedometer (DW) under free-living conditions with regard to children's steps taken and time in light-intensity physical activity (PA) and moderate to vigorous PA (MVPA). Methods: Participants (N = 31, age = 10.2 ± 0.4 yr) wore LC, AG, and DW monitors from arrival at school (7:45 a.m.) until they went to bed. Time in light and MVPA intensities were calculated using two separate intensity classifications for the LC (LC_4 and LC_5) and four classifications for the AG (AG_Treuth, AG_Puyau, AG_Trost, and AG_Freedson). Both accelerometers provided steps as outputs. DW steps were self-recorded. Repeated-measures ANOVA was used to assess overlapping monitor outputs. Results: There was no difference between DW and LC steps (Δ = 200 steps), but a nonsignificant trend was observed in the pairwise comparison between DW and AG steps (Δ = 1001 steps, P = 0.058). AG detected significantly greater steps than the LC (Δ = 801 steps, P = 0.001). Estimates of light-intensity activity minutes ranged from a low of 75.6 ± 18.4 min (LC_4) to a high of 309 ± 69.2 min (AG_Treuth). Estimates of MVPA minutes ranged from a low of 25.9 ± 9.4 min (LC_5) to a high of 112.2 ± 34.5 min (AG_Freedson). No significant differences in MVPA were seen between LC_5 and AG_Treuth (Δ = 4.9 min) or AG_Puyau (Δ = 1.7 min). Conclusion: The LC detected a comparable number of steps as the DW but significantly fewer steps than the AG in children. Current results indicate that the LC_5 and either AG_Treuth or AG_Puyau intensity derivations provide similar mean estimates of time in MVPA during-free living activity in 10-yr-old children.
Resumo:
Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co2+ into MBG scaffolds and investigate if the addition of Co2+ ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (< 5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties.