978 resultados para Migratory locust.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Macquarie perch (Macquaria australasica) is a threatened fish species that inhabits rivers and impoundments in south-eastern Australia. Previous studies have shown that Macquarie perch in impoundments exhibit synchronised upstream spawning migrations to shallow, fast-flowing habitats in the lower reaches of inflowing streams. There has been little study of movement behaviours of entirely riverine populations of Macquarie perch despite this being the species’ natural habitat. Here, radio-telemetry is used to test the hypothesis that riverine populations exhibit synchronised migrations during the spawning season. Thirty Macquarie perch in the Yarra River, Victoria, a translocated population outside of the species’ natural range, were radio-tagged before the late spring–early summer spawning season and their movements followed over a 10-month period (May 2011 to February 2012). Tagged fish typically occupied restricted reaches of stream (<450 m). Sixteen of the fish undertook occasional upstream or downstream movements (~250–1000 m) away from their usual locations, particularly associated with large flow variations during the spawning season. There was no evidence of synchronised migratory behaviour or movement of multiple fish to specific locations or habitats during the spawning season. Whilst further research over more years is needed to comprehensively document the spawning-related behaviours of riverine Macquarie perch, our study demonstrates that management of riverine populations of this threatened species cannot necessarily be based on the model of spawning behaviour developed for lacustrine populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban expansion brings profound impacts and challenges to many ecosystems, including wetlands. Unauthorised public access to wetland sanctuaries can lead to a number of management problems, such as increasing disturbance to migratory shorebirds. We investigate unauthorised human use of a coastal urban wetland located in Melbourne, Australia, and use current results to predict future patterns of visitation under different management and urban development scenarios. Despite being officially closed to the public, 20.8% of the 574 ha wetland experienced human intrusions during the sampling period. These were most frequent in the section which directly abuts residential development where over 50% of the wetland experienced intrusions. The most frequently observed activities were walking (4.8 ± 4.9 intrusions per observation day), dog walking (8.5 ± 4.5), cycling (3.0 ± 1.8) and motorised trail bike riding (2.5 ± 1.0). There were significant negative relationships between the occurrence of intrusions and distance from the wetland boundary and access points. Walkers and dog walkers were likely to intrude more deeply into the wetlands than other users. We predict that once residential development is completed around the entire perimeter of the wetland that 48% of the total area will be subject to intrusions. This will increase to 58.8% if internal management tracks are opened for public use. We recommend that the current access policy is maintained, and compliance is enhanced through education and additional physical barriers. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km2) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species' use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long-distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the vast majority of migratory bird species studied so far, spring migration has been found to proceed faster than autumn migration. In spring, selection pressures for rapid migration are purportedly higher, and migratory conditions such as food supply, daylength, and/or wind support may be better than in autumn. In swans, however, spring migration appears to be slower than autumn migration. Based on a comparison of tundra swan Cygnus columbianus tracking data with long-term temperature data from wheather stations, it has previously been suggested that this was due to a capital breeding strategy (gathering resources for breeding during spring migration) and/or to ice cover constraining spring but not autumn migration. Here we directly test the hypothesis that Bewick's swans Cygnus columbianus bewickii follow the ice front in spring, but not in autumn, by comparing three years of GPS tracking data from individual swans with concurrent ice cover data at five important migratory stop-over sites. In general, ice constrained the swans in the middle part of spring migration, but not in the first (no ice cover was present in the first part) nor in the last part. In autumn, the swans migrated far ahead of ice formation, possibly in order to prevent being trapped by an early onset of winter. We conclude that spring migration in swans is slower than autumn migration because spring migration speed is constrained by ice cover. This restriction to spring migration speed may be more common in northerly migrating birds that rely on freshwater resources. © 2013 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike exercising mammals, migratory birds fuel very high intensity exercise (e.g., flight) with fatty acids delivered from the adipose tissue to the working muscles by the circulatory system. Given the primary importance of fatty acids for fueling intense exercise, we discuss the likely limiting steps in lipid transport and oxidation for exercising birds and the ecological factors that affect the quality and quantity of fat stored in wild birds. Most stored lipids in migratory birds are comprised of three fatty acids (16:0, 18:1 and 18:2) even though migratory birds have diverse food habits. Diet selection and selective metabolism of lipids play important roles in determining the fatty acid composition of birds which, in turn, affects energetic performance during intense exercise. As such, migratory birds offer an intriguing model for studying the implications of lipid metabolism and obesity on exercise performance. We conclude with a discussion of the energetic costs of migratory flight and stopover in birds, and its implications for bird migration strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most species of long-distance migratory birds put on energy stores to fuel their travels. However, recent studies have highlighted the potential costs associated with carrying too much fuel, either through increased predation risk or decreased flight efficiency. Consequently, it is now widely accepted that migratory birds should carry optimal rather than maximum fuel loads. Information from 372 garganey (Anas querquedula) ringed and recaptured at least once during the same spring in the Camargue, southern France, was used to document fuelling rates of individual ducks in relation to environmental variation and individual variation in condition. On average, garganey added very little fuel stores in the Camargue (mean gain per day = 0.33 g, less than 0.5% of mean body-mass in total over an average stay of 5 days). Fuelling rates were negatively correlated with body mass at capture, but it cannot be excluded that this pattern was a statistical artefact. Given their body-mass at ringing, garganey could potentially still fly long distances when they stop in the Camargue. It is therefore likely that the aim of their stay in southern France is more for resting than refuelling, a finding that may have implications for the proper management of stop-over sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewick's swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern Russia in 1996. During the 82 occasions where a swan's location was recorded in flight, average flight altitude was 165 m a.s.1. with a maximum of 759 m a.s.1., despite winds often being more favourable at higher altitudes. We also counted Bewick's swans departing from the Gulf of Finland and subsequently passing an observatory in the next major stop-over area 800 km further north in the White Sea, northern Russia, during the springs of 1994, 1995 and 1996. A comparison of these counts with wind data provided evidence for Bewick's swans using favourable changes in wind conditions to embark on migration. Changes in the numbers of birds arriving in the White Sea correlated best with favourable changes in winds in the Gulf of Finland 1 day earlier. Again, migratory volume showed a correlation with winds at low altitudes only, despite wind conditions for the swans being more favourable at high altitudes. We conclude that the relatively large Bewick's swan tends to gear its migration to wind conditions at low altitude only. We argue that Bewick's swans do not climb to high altitudes because of mechanical and physiological limitations with respect to the generation of power for flight and to avoid rapid dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radar observations on the altitude of bird migration and altitudinal profiles of meteorological conditions over the Sahara desert are presented for the autumn migratory period. Migratory birds fly at an average altitude of 1016 m (a.s.l.) during the day and 571 m during the night. Weather data served to calculate flight range using two models: an energy model (EM) and an energy-and-water model (EWM). The EM assumes that fuel supply limits flight range whereas the EWM assumes that both fuel and water may limit flight range. Flight ranges estimated with the EM were generally longer than those with the EWM. This indicates that trans-Sahara migrants might have more problems balancing their water than their energy budget. However, if we assume fuel stores to consist of 70% instead of 100% fat (the remainder consisting of 9% protein and 21% water), predicted flight ranges of the EM and EWM largely overlap. Increased oxygen extraction, reduced flight costs, reduced exhaled air temperature, reduced cutaneous water loss and increased tolerance to water loss are potential physiological adaptations that would improve the water budget in migrants. Both the EM and EWM predict optimal flight altitudes in agreement with radar observations in autumn. Optimal flight altitudes are differently predicted by the EM and EWM for nocturnal spring migration. During spring, the EWM predicts moderately higher and the EM substantially higher flight altitudes than during autumn. EWM predictions are therefore in better agreement with radar observations on flight altitude of migrants over the Negev desert in spring than EM predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. We studied the changes in body mass, metabolizable energy intake rate (ME) and basal metabolic rate (BMR) of a Thrush Nightingale, Luscinia luscinia, following repeated 12-h migratory flights in a wind tunnel. In total the bird flew for 176 h corresponding to 6300 km. This is the first study where the fuelling phase has been investigated in a bird migrating in captivity.

2. ME was very high, supporting earlier findings that migrating birds have among the highest intake rates known among homeotherms. ME was significantly higher the second day of fuelling, indicating a build-up of the capacity of the digestive tract during the first day of fuelling.

3. Further indications of an increase in size or activity level of metabolically active structures during fuelling come from the short-term variation in BMR, which increased over the 2-day fuelling period with more than 20%, and in almost direct proportion to body mass. However, mass-specific BMR decreased over the season.

4. The patterns of mass change, ME and BMR of our focal bird following two occasions of 12-h fasts were the same as after flights, indicating that fast and flight may involve similar physiological processes.

5. The relatively low ME the first day following a flight may be a contributing factor to the well-known pattern that migrating birds during stopover normally lose mass the first day of fuelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basal metabolic rate (BMR) of Old World long-distance-migrant shorebirds has been found to vary along their migration route. On average, BMR is highest in the Arctic at the start of fall migration, intermediate at temperate latitudes, and lowest on the tropical wintering grounds. As a test of the generality of this pattern, we measured the BMR of one adult and 44 juvenile shorebirds of 10 species (1-18 individuals of each species, body-mass range 19-94 g) during the first part of their southward migration in the Canadian Arctic (68-76°N). The interspecific relationship between BMR and body mass was almost identical to that found for juvenile shorebirds in the Eurasian Arctic (5 species), although only one species appeared in both data sets. We conclude that high BMR of shorebirds in the Arctic is a circumpolar phenomenon. The most likely explanation is that the high BMR reflects physiological adaptations to low ambient temperatures. Whether the BMR of New World shorebirds drops during southward migration remains to be investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In late November 2014 higher than normal death losses in a meat turkey and chicken broiler breeder farm in the Fraser Valley of British Columbia initiated a diagnostic investigation that led to the discovery of a novel reassortant highly pathogenic avian influenza (HPAI) H5N2 virus. This virus, composed of 5 gene segments (PB2, PA, HA, M and NS) related to Eurasian HPAI H5N8 and the remaining gene segments (PB1, NP and NA) related to North American lineage waterfowl viruses, represents the first HPAI outbreak in North American poultry due to a virus with Eurasian lineage genes. Since its first appearance in Korea in January 2014, HPAI H5N8 spread to Western Europe in November 2014. These European outbreaks happened to temporally coincide with migratory waterfowl movements. The fact that the British Columbia outbreaks also occurred at a time associated with increased migratory waterfowl activity along with reports by the USA of a wholly Eurasian H5N8 virus detected in wild birds in Washington State, strongly suggest that migratory waterfowl were responsible for bringing Eurasian H5N8 to North America where it subsequently reassorted with indigenous viruses.