974 resultados para Microscopy of materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were prepared using reactive radio-frequency magnetron sputtering of a pure metallic zinc target onto glass substrates. The evolution of the surface morphology and the optical properties of the films were studied as a function of the substrate temperature, which was varied from 50 to 250 C. The surface topography of the samples was examined using atomic force microscopy (AFM), and their optical properties were studied via transmittance measurements in the UV-Vis-NIR region. DRX and AFM analyses showed that the surface morphology undergoes a structural transition at substrate temperatures of around 150 C. Actually, at 50 C the formation of small grains was observed while at 250 C the grains observed were larger and had more irregular shapes. The optical gap remained constant at ∼3.3 eV for all films. In the visible region, the average optical transmittance was 80 %. From these results, one can conclude that the morphological properties of the ZnO thin films were more greatly affected by the substrate temperature, due to mis-orientation of polycrystalline grains, than were the optical properties. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery. The pattern of inflammation was evaluated by histomorphometry of the inflammatory cells. Chemical and morphological changes of implanted materials after 60 and 100 days were evaluated by Fourier transform infrared (FTIR) absorption spectroscopy and scanning electron microscopy (SEM) images. Cytotoxicity tests indicated a good tolerance of the cells to the biomaterial. The in vivo tissue response of all studied materials showed normal inflammatory pattern, characterized by a reduction of polymorphonuclear leukocytes and an increase in mononuclear leukocytes over the time (p < 0.05 Kruskal-Wallis). On day 60, microscopic analysis showed regression of the chronic inflammatory process around all materials. FTIR showed no changes in chemical composition of materials due to implantation, whereas SEM demonstrated the delivery of starch in the medium. Therefore, the results of the tests performed in vitro and in vivo show that the innovative blends can further be used as biomaterials. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1284-1293, 2013. Copyright © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the density, density profile, water swelling and absorption, modulus of elasticity and rupture from static bending, and tensile strength of experimental medium-density fiberboards manufactured using Dendrocalamus giganteus (Munro bamboo). The fiber production was carried out through the chemo-thermo-mechanical pulping process with four different conditions. The panels were made with 10% urea formaldehyde resin based on dry weight of the fibers, 2.5% of a catalyzer (ammonium sulfate) and 2% paraffin. The results indicate that treatments with the highest alkali (NaOH) percentage, time and splinter heating temperature improved the physical properties of the panels. The root-fiber interface was evaluated through scanning electron microscopy in fracture zones, which revealed fibers with thick, inflexible walls. The panels' mechanical properties were affected due to the fiber wall characteristics and interaction with resin. Giant bamboo fiber has potential for MDF production, but other studies should be carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRIP (Transformation Induced Plasticity) and DP (Dual-Phase) steels are written in a new series of steels which present excellent mechanical properties. As for microstructure aspect, TRIP steels consist on a ferrite matrix with a second phase dispersion of other constituents, such as bainite, martensite and retained austenite, while dual-phase steels consist on martensite dispersion in a ferrite matrix. In order to identify the different microconstituents present in these materials, microstructure characterization techniques by optical microscopy (using different etchants: LePera, Heat-Tinting and Nital) and scanning electron microscopy were carried out. This being so, microstructures were correlated with mechanical properties of materials, determined by means of tensile tests. It is concluded that steels assisted by TRIP effect have a strength and elongation relation higher than the dual-phase one. With microstructure characterization, it was observed phases present in these materials microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the quality of casting produced in an experimental short-term heating-cycle investment. Thus, reaction layer and castability of titanium casting using an experimental spinel-based investment (VR) with short heating cycle were compared with the commercial short-heating-cycle spinel-based investment Trinell (TR), the silica-phosphate-based investment Rematitan Plus ( RP), and the conventional spinel-based investment Rematitan Ultra (RU). VR has polymeric fibers added to inorganic particles. Reaction layer assessments were carried out using Vickers hardness and elemental analysis using dispersive X-ray microanalysis (EDX). Mesh patterns were used for castability test, and powder characterization was made by scanning electron microscopy (SEM). Hardness evaluation showed no difference among the investments between 100 and 200 mu m. The most important contaminant element for VR, TR, and RU was oxygen. Higher levels of mold filling were found for TR, VR, and RU compared with that obtained with RP. The quality of castings, characterized by means of the assessments of reaction layer and castability, made from the VR was similar to the commercial investments TR and RU but superior to the RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental investigations were carried out using a Nd:YAG laser operating in pulsed mode for welding a lap joint between thin foil and thick sheet. The pulse energy was varied from 1.5 to 3.0 J at increments of 0.25 J with a 4 ms pulse duration. The base material used for this study was AISI 316L foils with 100 mu m thickness and sheet with 3.0 mm thickness. The welds were analysed by optical and electronic microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to join thin foil and thick sheet with good quality. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. The process appeared to be very sensitive to the gap between couples. Large voids delimited by the molten zone boundary were observed in joints welded with high pulse energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the preparation and complementary characterization of a composite formed from the activation of titanium isopropoxide by phosphoric acid and deionized water (TiP). Techniques such as, X-ray diffraction (XRD), Raman, electronic (UV-vis) and Scanning electron microscopies (SEM) were used for characterization of this new composite formed. In the X-ray diffractogram of TIP was observed four intense peaks. A strong absorption was observed in the region 362-445 nm. The scanning electron microscopy of TiP, shows that the prepared material consists mostly of a cluster of spherical particles with diameters ranging from 2.35 to 2.60 mu m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)