937 resultados para Microsatellite markers
Resumo:
Computation technology has dramatically changed the world around us; you can hardly find an area where cell phones have not saturated the market, yet there is a significant lack of breakthroughs in the development to integrate the computer with biological environments. This is largely the result of the incompatibility of the materials used in both environments; biological environments and experiments tend to need aqueous environments. To help aid in these development chemists, engineers, physicists and biologists have begun to develop microfluidics to help bridge this divide. Unfortunately, the microfluidic devices required large external support equipment to run the device. This thesis presents a series of several microfluidic methods that can help integrate engineering and biology by exploiting nanotechnology to help push the field of microfluidics back to its intended purpose, small integrated biological and electrical devices. I demonstrate this goal by developing different methods and devices to (1) separate membrane bound proteins with the use of microfluidics, (2) use optical technology to make fiber optic cables into protein sensors, (3) generate new fluidic devices using semiconductor material to manipulate single cells, and (4) develop a new genetic microfluidic based diagnostic assay that works with current PCR methodology to provide faster and cheaper results. All of these methods and systems can be used as components to build a self-contained biomedical device.
Resumo:
Crassostrea (Sacco, 1897) é o gênero mais importante do mundo de ostras de cultivo e consiste de 34 espécies distribuídas pelas regiões tropicais e temperadas do globo. C. gasar e C. rhizophorae são as duas espécies nativas que estão distribuídas ao longo de toda a costa do Brasil até o Caribe. C. gasar também ocorre na costa da Africa. Ainda que sua distribuição seja extensa e com disponibilidade abundante, o cultivo de ostras nativas no Brasil ainda é incipiente e a delimitação correta dos estoques mantém-se incerta. O sucesso do desenvolvimento da malacocultura, que é recomendada internacionalmente como forma sustentável de aquicultura, depende da resolução desses problemas. Assim, com o objetivo de determinar geneticamente seus estoques no Atlântico como também estimar sua história demográfica, dois diferentes marcadores moleculares foram empregados: sequências de DNA da região controle mitocondrial e loci de microssatélites espécie-especifícos, desenvolvidos no presente estudo. Foram sequenciados fragmentos da região controle de um total de 930 indivíduos de C. gasar e C. rhizophorae coletados em 32 localidades que incluíram o Caribe, a Guiana Francesa, a costa brasileira e a África. Também foram realizadas genotipagens de 1178 indivíduos, e ambas as espécies, com 9 e 11 loci de microssatélites para C. gasar e C. rhizophorae, respectivamente. Os dados genéticos foram analisados através de diferentes abordagens (índices de estruturação (FST) e de (Jost D), análise molecular de variância (AMOVA), análise espacial molecular de variância (SAMOVA), Bayesian Skyline Plots (BSP), análise fatorial de correspondência (AFC) e análise de atribuição Bayesiana (STRUCTURE)). Os resultados indicaram um padrão geral de estruturação, onde dois diferentes estoques foram detectados para ambas as espécies: grupos do norte e do sul, onde o Rio de Janeiro seria a região limitante entre os dois estoques. Os maiores valores dos índices de estruturação foram encontrados para C. gasar, indicando que esta espécie estaria mais estruturada do que C. rhizophorae. As análises demográficas indicaram uma provável expansão das populações durante o ultimo período glacial e uma possível origem americana das populações africanas. Todos os resultados sugeriram a existência de uma barreira geográfica próxima ao Rio de Janeiro, que poderia ser a cadeia de Vitória-Trindade e o fenômeno de ressurgência que ocorre em Cabo Frio (RJ). Esses resultados serão de grande utilidade para estabelecer critérios para seleção de sementes para cultivo ao longo da costa do Brasil que permitirá o manejo adequado dos estoques ostreícolas, prevenindo seu desaparecimento como já ocorrido em outros recifes no mundo.
Resumo:
Introduction. Obesity and obstructive sleep apnea syndrome (OSA) are common coexisting conditions associated with a chronic low-grade inflammatory state underlying some of the cognitive, metabolic, and cardiovascular morbidities. Aim. To examine the levels of inflammatory markers in obese community-dwelling children with OSA, as compared to no-OSA, and their association with clinical and polysomnographic (PSG) variables. Methods. In this cross-sectional, prospective multicenter study, healthy obese Spanish children (ages 4-15 years) were randomly selected and underwent nocturnal PSG followed by a morning fasting blood draw. Plasma samples were assayed for multiple inflammatory markers. Results. 204 children were enrolled in the study; 75 had OSA, defined by an obstructive respiratory disturbance index (RDI) of 3 events/hour total sleep time (TST). BMI, gender, and age were similar in OSA and no-OSA children. Monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in OSA children, with interleukin-6 concentrations being higher in moderate-severe OSA (i.e., AHI > 5/hrTST; P < 0.01), while MCP-1 levels were associated with more prolonged nocturnal hypercapnia (P < 0.001). Conclusion. IL-6, MCP-1, and PAI-1 are altered in the context of OSA among community-based obese children further reinforcing the proinflammatory effects of sleep disorders such as OSA. This trial is registered with ClinicalTrials.gov NCT01322763.
Resumo:
Determining patterns of population connectivity is critical to the evaluation of marine reserves as recruitment sources for harvested populations. Mutton snapper (Lutjanus analis) is a good test case because the last known major spawning aggregation in U.S. waters was granted no-take status in the Tortugas South Ecological Reserve (TSER) in 2001. To evaluate the TSER population as a recruitment source, we genotyped mutton snapper from the Dry Tortugas, southeast Florida, and from three locations across the Caribbean at eight microsatellite loci. Both Fstatistics and individual-based Bayesian analyses indicated that genetic substructure was absent across the five populations. Genetic homogeneity of mutton snapper populations is consistent with its pelagic larval duration of 27 to 37 days and adult behavior of annual migrations to large spawning aggregations. Statistical power of future genetic assessments of mutton snapper population connectivity may benefit from more comprehensive geographic sampling, and perhaps from the development of less polymorphic DNA microsatellite loci. Research where alternative methods are used, such as the transgenerational marking of embryonic otoliths with barium stable isotopes, is also needed on this and other species with diverse life history characteristics to further evaluate the TSER as a recruitment source and to define corridors of population connectivity across the Caribbean and Florida.
Resumo:
The Pacific Rim population structure of chum salmon (Oncorhynchus keta) was examined with a survey of microsatellite variation to describe the distribution of genetic variation and to evaluate whether chum salmon may have originated from two or more glacial refuges following dispersal to newly available habitat after glacial retreat. Variation at 14 microsatellite loci was surveyed for over 53,000 chum salmon sampled from over 380 localities ranging from Korea through Washington State. An index of genetic differentiation, FST, over all populations and loci was 0.033, with individual locus values ranging from 0.009 to 0.104. The most genetically diverse chum salmon were observed from Asia, particularly Japan, whereas chum salmon from the Skeena River and Queen Charlotte Islands in northern British Columbia and those from Washington State displayed the fewest number of alleles compared with chum salmon in other regions. Differentiation in chum salmon allele frequencies among regions and populations within regions was approximately 18 times greater than that of annual variation within populations. A regional structuring of populations was the general pattern observed, with chum salmon spawning in different tributaries within a major river drainage or spawning in smaller rivers in a geographic area generally more similar to each other than to populations in different major river drainages or geographic areas. Population structure of chum salmon on a Pacific Rim basis supports the concept of a minimum of two refuges, northern and southern, during the last glaciation, but four possible refuges fit better the observed distribution of genetic variation. The distribution of microsatellite variation of chum salmon on a Pacific Rim basis likely reflects the origins of salmon radiating from refuges after the last glaciation period.
Resumo:
In this note, we document polymerase-chain-reaction (PCR) primer pairs for 101 nuclear-encoded microsatellites designed and developed from a genomic library for red drum (Sciaenops ocellatus). Details of the genomic library construction, the sequencing of positive clones, primer design, and PCR protocols may be found in Karlsson et al. (2008). The 101 microsatellites (GENBA NK Accession Numbers EU015882-EU015982) were amplified successfully and used to genotype 24 red drum obtained from Galveston Bay, Texas (Table 1). A total of 69 of the microsatellites had an uninterrupted (perfect) dinucleotide motif, and 30 had an imperfect dinucleotide motif; one microsatellite had an imperfect tetranucleotide motif, and one had an imperfect and compound motif (Table 1 ). Sizes of the cloned alleles ranged from 84 to 252 base pairs. A ‘blast’ search of the GENBANK database indicated that all of the primers and the cloned alleles were unique (i.e., not duplicated).
Resumo:
Variation at 14 microsatellite loci was examined in 34 chum salmon (Oncorhynchus keta) populations from Russia and evaluated for its use in the determination of population structure and stock composition in simulated mixed-stock fishery samples. The genetic differentiation index (Fst) over all populations and loci was 0.017, and individual locus values ranged from 0.003 to 0.054. Regional population structure was observed, and populations from Primorye, Sakhalin Island, and northeast Russia were the most distinct. Microsatellite variation provided evidence of a more fine-scale population structure than those that had previously been demonstrated with other genetic-based markers. Analysis of simulated mixed-stock samples indicated that accurate and precise regional estimates of stock composition were produced when the microsatellites were used to estimate stock compositions. Microsatellites can be used to determine stock composition in geographically separate Russian coastal chum salmon fisheries and provide a greater resolution of stock composition and population structure than that previously provided with other techniques.
Resumo:
Molecular markers based on mitochondrial DNA (mtDNA) are extensively used to study genetic relationships. mtDNA has been used in phylogenetic studies to understand the evolutionary history of species because it is maternally inherited and is not subject to genetic recombination (Gyllensten et al., 1991). The high mutation rate of mtDNA makes it a useful tool for differentiating between closely related species (Brown et al., 1979)—a tool that is especially important when significant variations occur between species, but not within species (Hill et al., 2001; Blair et al., 2006; Chow et al., 2006a).