992 resultados para Microorganisms.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that activates caspase 1, leading to the processing and secretion of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and IL-18. The NLRP3 inflammasome is activated by a wide range of danger signals that derive not only from microorganisms but also from metabolic dysregulation. It is unclear how these highly varied stress signals can be detected by a single inflammasome. In this Opinion article, we review the different signalling pathways that have been proposed to engage the NLRP3 inflammasome and suggest a model in which one of the crucial elements for NLRP3 activation is the generation of reactive oxygen species (ROS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. [Int Microbiol 2008; 11(4):231-236]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The diagnosis of microbial ureteral stent colonisation (MUSC) is difficult, since routine diagnostic techniques do not accurately detect microorganisms embedded in biofilms. New methods may improve diagnostic yield and understanding the pathophysiology of MUSC. The aim of the present study was to evaluate the potential of sonication in the detection of MUSC and to identify risk factors for device colonisation. METHODS: Four hundred and eight polyurethane ureteral stents of 300 consecutive patients were prospectively evaluated. Conventional urine culture (CUC) was obtained prior to stent placement and device removal. Sonication was performed to dislodge adherent microorganisms. Data of patient sex and age, indwelling time and indication for stent placement were recorded. RESULTS: Sonicate-fluid culture detected MUSC in 36%. Ureteral stents inserted during urinary tract infection (UTI) were more frequently colonised (59%) compared to those placed in sterile urine (26%; P < 0.001). Female sex (P < 0.001) and continuous stenting (P < 0.005) were significant risk factors for MUSC; a similar trend was observed in patients older than 50 years (P = 0.16). MUSC and indwelling time were positively correlated (P < 0.005). MUSC was accompanied by positive CUC in 36%. Most commonly isolated microorganisms were Coagulase-negative staphylococci (18.3%), Enterococci (17.9%) and Enterobacteriaceae (16.9%). CONCLUSIONS: Sonication is a promising approach in the diagnosis of MUSC. Significant risk factors for MUSC are UTI at the time of stent insertion, female sex, continuous stenting and indwelling time. CUC is a poor predictor of MUSC. The clinical relevance of MUSC needs further evaluation to classify isolated microorganism properly as contaminants or pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of its severity, it is agreed that infectious endocarditis should be prevented whenever possible. Determining adequate prophylactic measures involves establishing (a) the patients at risk, (b) the procedures that might provoke bacteraemia, (c) the most effective prophylactic regimen, and (d) a balance between the risks of side effects from prophylaxis and of developing infectious endocarditis. Patients at risk and procedures inducing bacteraemia have been identified by clinical studies. On the other hand, the efficacy of prophylactic antibiotics has been based on animal studies. Randomised, placebo-controlled studies do not exist in humans because they would require large patient numbers and would raise ethical issues due to the severity of the disease. Case-control studies have indicated that infectious endocarditis prophylaxis is effective, but prevents only a limited number of cases. Animal experiments have revealed several key issues for human application. First, antibiotics do not prevent the early stages of valve colonisation, but rather kill the microorganisms after their attachment to the cardiac lesions. Second, the duration of antibiotic presence in the serum is critical. Under experimental conditions, the drugs must remain above their minimal inhibitory concentration for the organisms for > or = 10 h, to allow time for bacterial clearance from the valves. Third, antibiotic-induced killing is not the only mechanism allowing bacterial clearance. Other factors, such as platelet microbicidal proteins, may act in concert with the drugs to sterilise the lesions. Recommendations for prophylaxis have recently been revised in Europe and the USA. New information has improved the definition of groups at risk. Since most cases of infectious endocarditis are not preceded by medical procedures, primary prevention of infectious endocarditis should target infected foci responsible for spontaneous bacteraemia (e.g. poor dental hygiene). The purpose of this article is to update the existing recommendations in Switzerland, under the perspective of changing epidemiology, the availability of new drugs, and harmonisation with recommendations in other countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibiotic-resistant pathogens are a major health concern in everyday clinical practice. Because their detection by conventional microbial techniques requires minimally 24 h, some of us have recently introduced a nanomechanical sensor, which can reveal motion at the nanoscale. By monitoring the fluctuations of the sensor, this technique can evidence the presence of bacteria and their susceptibility to antibiotics in less than 1 h. Their amplitude correlates to the metabolism of the bacteria and is a powerful tool to characterize these microorganisms at low densities. This technique is new and calls for an effort to optimize its protocol and determine its limits. Indeed, many questions remain unanswered, such as the detection limits or the correlation between the bacterial distribution on the sensor and the detection's output. In this work, we couple fluorescence microscopy to the nanomotion investigation to determine the optimal experimental protocols and to highlight the effect of the different bacterial distributions on the sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mucosal epithelia of the digestive tract acts as a selective barrier, permeable to ions, small molecules and macromolecules. These epithelial cells aid the digestion of food and absorption of nutrients. They contribute to the protection against pathogens and undergo continuous cell renewal which facilitates the elimination of damaged cells. Both innate and adaptive defence mechanisms protect the gastrointestinal-mucosal surfaces against pathogens. Interaction of microorganisms with epithelial cells triggers a host response by activating specific transcription factors which control the expression of chemokines and cytokines. This host response is characterized by the recruitment of macrophages and neutrophils at the site of infection. Disruption of epithelial signalling pathways that recruit migratory immune cells results in a chronic inflammatory response. The adaptive defence mechanism relies on the collaboration of epithelial cells (resident sampling system) with antigen-presenting and lymphoid cells (migratory sampling system); in order to obtain samples of foreign antigen, these samples must be transported across the barriers without affecting the integrity of the barrier. These sampling systems are regulated by both environmental and host factors. Fates of the antigen may differ depending on the way in which they cross the epithelial barrier, i.e. via interaction with motile dendritic cells or epithelial M cells in the follicle-associated epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction of metagenomic libraries has permitted the study of microorganisms resistant to isolation and the analysis of 16S rDNA sequences has been used for over two decades to examine bacterial biodiversity. Here, we show that the analysis of random sequence reads (RSRs) instead of 16S is a suitable shortcut to estimate the biodiversity of a bacterial community from metagenomic libraries. We generated 10,010 RSRs from a metagenomic library of microorganisms found in human faecal samples. Then searched them using the program BLASTN against a prokaryotic sequence database to assign a taxon to each RSR. The results were compared with those obtained by screening and analysing the clones containing 16S rDNA sequences in the whole library. We found that the biodiversity observed by RSR analysis is consistent with that obtained by 16S rDNA. We also show that RSRs are suitable to compare the biodiversity between different metagenomic libraries. RSRs can thus provide a good estimate of the biodiversity of a metagenomic library and, as an alternative to 16S, this approach is both faster and cheaper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The role of video-assisted thoracoscopic surgery in the treatment of pleural empyema was assessed in a consecutive series of 328 patients between 1992 and 2002. An analysis of the predicting factors for conversion thoracotomy in presumed stage II empyema was performed. METHODS: Empyema stage III with pleural thickening and signs of restriction on computer tomography imaging was treated by open decortication, whereas a thoracoscopic debridement was attempted in presumed stage II disease. Conversion thoracotomy was liberally used during thoracoscopy if stage III disease was found at surgery. Predictive factors for conversion thoracotomy were calculated in a multivariate analysis among several variables such as age, sex, time interval between onset of symptoms and surgery, involved microorganisms, and underlying cause of empyema. RESULTS: Of the 328 patients surgically treated for stage II and III empyema, 150 underwent primary open decortication for presumed stage III disease. One hundred seventy-eight patients with presumed stage II empyema underwent a video-assisted thoracoscopic approach. Of these 178 patients, thoracoscopic debridement was successful in 99 of 178 patients (56%), and conversion thoracotomy and open decortication was judged necessary in 79 of 178 patients (44%). The conversion thoracotomy rate was higher in parapneumonic empyema (55%) as compared with posttraumatic (32%) or postoperative (29%) empyema; however, delayed referral (p < 0.0001) and gram-negative microorganisms (p < 0.01) were the only significant predictors for conversion thoracotomy in a multivariate analysis. CONCLUSIONS: Video-assisted thoracoscopic debridement offers an elegant, minimally invasive approach in a number of patients with presumed stage II empyema. However, to achieve a high success rate with the video-assisted thoracoscopic approach, early referral of the patients to surgery is required. Conversion thoracotomy should be liberally used in case of chronicity, especially after delayed referral (> 2 weeks) and in the presence of gram-negative organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few data are available on the occurrence of chlamydial infections in wild small mammals. We investigated the significance of free-living small mammals as reservoirs or transmission hosts for microorganisms of the phylum/class Chlamydiae. We obtained 3,664 tissue samples from 911 animals in Switzerland, Germany, Austria, the Czech Republic, and Afghanistan. Samples included internal organs (n = 3,652) and feces (n = 12) from 679 rodents (order Rodentia) and 232 insectivores (order Soricomorpha) and were tested by three TaqMan® real-time PCRs specific for members of the family Chlamydiaceae and selected Chlamydia-like organisms such as Parachlamydia spp. and Waddlia spp. Only one of 911 (0.11%) animals exhibited a questionable positive result by Chlamydiaceae-specific real-time PCR. Five of 911 animals were positive by specific real-time PCR for Parachlamydia spp. but could not be confirmed by quantitative PCR targeting the Parachlamydia acanthamoebae secY gene (secY qPCR). One of 746 animals (0.13%) was positive by real-time PCR for Waddlia chondrophila. This result was confirmed by Waddlia secY qPCR. This is the first detection of Chlamydia-like organisms in small wildlife in Switzerland. Considering previous negative results for Chlamydiaceae in wild ruminant species from Switzerland, these data suggest that wild small mammals are unlikely to be important carriers or transport hosts for Chamydiaceae and Chlamydia-like organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superantigens (SAgs) are proteins of microbial origin that bind to major histocompatibility complex (MHC) class II molecules and stimulate T cells via interaction with the V beta domain of the T cell receptor (TCR). Mouse mammary tumor virus (MMTV) is a milk-transmitted type B retrovirus that encodes a SAg in its 3' long terminal repeat. Upon MMTV infection, B cells present SAg to the appropriate T cell subset, which leads to a strong "cognate" T-B interaction. This immune reaction results in preferential clonal expansion of infected B cells and differentiation of some of these cells into long-lived memory cells. In this way a stable MMTV infection is achieved that ultimately results in infection of the mammary gland and virus transmission via milk. Thus, in contrast to many microorganisms that attempt to evade the host immune system (reviewed in 1), MMTV depends upon a strong SAg-induced immune response for its survival. Because of their ability to stimulate very strong T cell responses in MHC-identical mice, minor lymphocyte stimulatory (Mls) antigens, discovered more than 20 years ago, are now known to be SAgs encoded by endogenous MMTV proviruses that have randomly integrated into germ cells. The aim of this review is to combine the extensive biology of Mls SAgs with our current understanding of the life cycle of MMTV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Negative pressure wound treatment is increasingly used through a Vacuum-Assisted Closure (VAC) device in complex wound situations. For this purpose, sterile polyurethane (PU) and polyvinyl alcohol (PVA) foam dressings are fitted to the wound size and covered with an adhesive drape to create an airtight seal. Little information exists about the type and quantity of microorganisms within the foams. Therefore, we investigated VAC foams after removal from the wound using a validated method (sonication) to detect the bacterial bioburden in the foam consisting as microbial biofilms.Methods: We prospectively included VAC foams (PU and PVA, KCI, Rümlamg, Switzerland) without antibacterial additions (e.g. silver), which were removed from wounds in patients with chronic ulcers from January 2007 through December 2008. Excluded were patients with acute wound infection, necrotizing fasciitis, underlying osteomyelitis or implant. Removed foams from regular changes of dressing were aseptically placed in a container with 100 ml sterile Ringer's solution. Within 4 hours after removal, foams were sonicated for 5 min at 40 kHz (as described in NEJM 2007;357:654). The resulting sonication fluid was cultured at 37°C on aerobic blood agar plates for 5 days. Microbes were quantified as No. of colony-forming units (CFU)/ml sonication fluid and identified to the species level.Results: A total of 68 foams (38 PU and 30 PVA) from 55 patients were included in the study (median age 71 years; range 33-88 years, 57% were man). Foams were removed from the following anatomic sites: sacrum (n=29), ischium (n=18), heel (n=13), calves (n=6) and ankle (n=2). The median duration of being in place was 3 days (range, 1-8 days). In all 68 foams, bacteria were found in large quantities (median 105 CFU/ml, range 102-7 CFU/ml sonication fluid. No differences were found between PU and PVA foams. One type of organisms was found in 11 (16%), two in 17 (24%) and 3 or more in 40 (60%) foams. Gram-negative rods (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa) were isolated in 70%, followed by Staphylococcus aureus (20%), koagulase-negative staphylococci, streptococci (8%), and enterococci (2%).Conclusion: With sonication, a high density of bacteria present in VAC foams was demonstrated after a median of 3 days. Future studies are needed to investigate whether antimicrobial-impregnated foams can reduce the bacterial load in foams and potentially improve wound healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophils are key components of the inflammatory response and as such contribute to the killing of microorganisms. In addition, recent evidence suggests their involvement in the development of the immune response. The role of neutrophils during the first weeks post-infection with Leishmania donovani was investigated in this study. When L. donovani-infected mice were selectively depleted of neutrophils with the NIMP-R14 monoclonal antibody, a significant increase in parasite numbers was observed in the spleen and bone marrow and to a lesser extent in the liver. Increased susceptibility was associated with enhanced splenomegally, a delay in the maturation of hepatic granulomas, and a decrease in inducible nitric oxide synthase expression within granulomas. In the spleen, neutrophil depletion was associated with a significant increase in interleukin 4 (IL-4) and IL-10 levels and reduced gamma interferon secretion by CD4(+) and CD8(+) T cells. Increased production of serum IL-4 and IL-10 and higher levels of Leishmania-specific immunoglobulin G1 (IgG1) versus IgG2a revealed the preferential induction of Th2 responses in neutrophil-depleted mice. Altogether, these data suggest a critical role for neutrophils in the early protective response against L. donovani, both as effector cells involved in the killing of the parasites and as significant players influencing the development of a protective Th1 immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the in vitro antimicrobial activity of the Eucalyptus globulus essential oil, and of the xylitol and papain substances against the following microorganisms: Pseudomonas aeruginosa; Samonella sp.; Staphylococus aureus; Proteus vulgaris; Escherichia coli and Candida albicans. METHOD The in vitro antimicrobial evaluation was used by means of the agar diffusion test and evaluation of the inhibition zone diameter of the tested substances. Chlorhexidine 0.5% was used as control. RESULTS The Eucalyptus globulus oil showed higher inhibition than chlorhexidine when applied to Staphylococcus aureus, and equal inhibition when applied to the following microorganisms: Escherichia coli, Proteus vulgaris and Candida albicans. Papain 10% showed lower antimicrobial effect than chlorhexidine in relation to Candida albicans. Xylitol showed no inhibition of the tested microorganisms. CONCLUSION The Eucalyptus globulus oil has antimicrobial activity against different microorganisms and appears to be a viable alternative as germicidal agent hence, further investigation is recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer's patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-living amoebae serve as hosts for a variety of amoebae-resisting microorganisms, including giant viruses and certain bacteria. The latter include symbiotic bacteria as well as bacteria exhibiting a pathogenic phenotype towards amoebae. Amoebae-resisting bacteria have been shown to be widespread in water and to use the amoebae as a reservoir, a replication niche, a protective armour as well as a training ground to select virulence traits allowing survival in the face of microbicidal effects of macrophages, the first line of defense against invading pathogens. More importantly, amoebae play a significant role as a melting pot for genetic exchanges. These ecological and evolutionary roles of amoebae might also be at play for giant viruses and knowledge derived from the study of amoebae-resisting bacteria is useful for the study and understanding of interactions between amoebae and giant viruses. This is especially important since some genes have spread in all domains of life and the exponential availability of eukaryotic genomes and metagenomic sequences will allow researchers to explore these genetic exchanges in a more comprehensive way, thus completely changing our perception of the evolutionary history of organisms. Thus, a large part of this review is dedicated to report current known gene exchanges between the different amoebae-resisting organisms and between amoebae and the internalized bacteria.