983 resultados para Microonde Telerilevamento Satellite Meteorologia Nubi Precipitazioni Remote-sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topex/Poseidon sea surface height anomalies during 1993-2002 are decomposed using 2-D finite impulse response filters which showed biannual Rossby waves (BRWs) in the equatorial Indian Ocean (peak at 1.5 degrees S) and in the southern tropical Indian Ocean (peak at 10.5 degrees S) during Indian Ocean Dipole (IOD) years. Anomalous downwelling BRWs in the equatorial Indian Ocean triggered by the wind stress curl-induced Ekman pumping near the eastern boundary started propagating westward from the eastern boundary in July/August 1993 and 1996, i.e., more than one year prior to the formation of the IOD events of 1994 and 1997 respectively. These strong downwelling signals reach the western equatorial Indian Ocean during the peak dipole time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Restinga of Marambaia is an emerged sand bar located between the Sepetiba Bay and the South Atlantic Ocean, on the south-east coast of Brazil. The objective of this study was to observe the geomorphologic evolution of the coastal zone of the Restinga of Marambaia using multitemporal satellite images acquired by multisensors from 1975 to 2004. The images were digitally segmented by a region growth algorithm and submitted to an unsupervised classification procedure (ISOSEG) followed by a raster edit based on visual interpretation. The image time-series showed a general trend of decrease in the total sand bar area with values varying from 80.61km(2) in 1975 to 78.15km(2) in 2004. The total area calculation based on the 1975 and 1978 Landsat MSS data was shown to be super-estimated in relation to the Landsat TM, Landsat ETM+, and CBERS-2 CCD data. These differences can also be associated to the relatively poorer spatial resolution of the MSS data, nominally 79m, against the 20m of the CCD data and 30m of the TM and ETM+ data. For the estimates of the width in the central portion of the sand bar the variation was from 158m (1975) to 100m (2004). The formation of a spit in the northern region of the study area was visually observed. The area of the spit was estimated, with values varying from 0.82km(2) (1975) to 0.55km(2) (2004).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific agriculture has been adopted in a high-tech context using, for instance, in situ sensors, satellite images for remote sensing analysis, and some other technological devices. However, farmers and smallholders without the economic resources and required knowledge to use and to access the latest technology seem to find an impediment to precision agricultural practices. This article discusses the possibility of adopting precision agriculture (PA) principles for site-specific management but in a low technology context for such farmers. The proposed methodology to support PA combines low technology dependency and a participatory approach by involving smallholders, farmers and experts. The case studies demonstrate how the interplay of low technology and a participative approach may be suitable for smallholders for site-specific agriculture analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil is the largest sugarcane producer in the world and has a privileged position to attend to national and international market places. To maintain the high production of sugarcane, it is fundamental to improve the forecasting models of crop seasons through the use of alternative technologies, such as remote sensing. Thus, the main purpose of this article is to assess the results of two different statistical forecasting methods applied to an agroclimatic index (the water requirement satisfaction index; WRSI) and the sugarcane spectral response (normalized difference vegetation index; NDVI) registered on National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) satellite images. We also evaluated the cross-correlation between these two indexes. According to the results obtained, there are meaningful correlations between NDVI and WRSI with time lags. Additionally, the adjusted model for NDVI presented more accurate results than the forecasting models for WRSI. Finally, the analyses indicate that NDVI is more predictable due to its seasonality and the WRSI values are more variable making it difficult to forecast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evapotranspiration (ET) plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of the SEBAL algorithm for estimating surface turbulent heat fluxes at regional scale, using 28 images from MODIS. SEBAL estimates are compared with eddy-covariance (EC) measurements and results from the hydrological model MGB-IPH. SEBAL instantaneous estimates of latent heat flux (LE) yielded r(2) = 0.64 and r(2) = 0.62 over sugarcane croplands and savannas when compared against in situ EC estimates. At the same sites, daily aggregated estimates of LE were r(2) = 0.76 and r(2) = 0.66, respectively. Energy balance closure showed that turbulent fluxes over sugarcane croplands were underestimated by 7% and 9% over savannas. Average daily ET from SEBAL is in close agreement with estimates from the hydrological model for an overlay of 38,100 km(2) (r(2) = 0.88). Inputs to which the algorithm is most sensitive are vegetation index (NDVI), gradient of temperature (dT) to compute sensible heat flux (H) and net radiation (Re). It was verified that SEBAL has a tendency to overestimate results both at local and regional scales probably because of low sensitivity to soil moisture and water stress. Nevertheless the results confirm the potential of the SEBAL algorithm, when used with MODIS images for estimating instantaneous LE and daily ET from large areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes, an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein "multipollutant" refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions. A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short-and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor-and emission-based models, and surface observations used with remote sensing such as satellite data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral reflectance of the sea surface recorded using ocean colour satellite sensors has been used to estimate chlorophyll-a concentrations for decades. However, in bio-optically complex coastal waters, these estimates are compromised by the presence of several other coloured components besides chlorophyll, especially in regions affected by low-salinity waters. The present work aims to (a) describe the influence of the freshwater plume from the La Plata River on the variability of in situ remote sensing reflectance and (b) evaluate the performance of operational ocean colour chlorophyll algorithms applied to Southwestern Atlantic waters, which receive a remarkable seasonal contribution from La Plata River discharges. Data from three oceanographic cruises are used, in addition to a historical regional bio-optical dataset. Deviations found between measured and estimated concentrations of chlorophyll-a are examined in relation to surface water salinity and turbidity gradients to investigate the source of errors in satellite estimates of pigment concentrations. We observed significant seasonal variability in surface reflectance properties that are strongly driven by La Plata River plume dynamics and arise from the presence of high levels of inorganic suspended solids and coloured dissolved materials. As expected, existing operational algorithms overestimate the concentration of chlorophyll-a, especially in waters of low salinity (S<33.5) and high turbidity (Rrs(670)>0.0012 sr−1). Additionally, an updated version of the regional algorithm is presented, which clearly improves the chlorophyll estimation in those types of coastal environment. In general, the techniques presented here allow us to directly distinguish the bio-optical types of waters to be considered in algorithm studies by the ocean colour community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degree in Marine Sciences. Faculty of Marine Sciences, University of Las Palmas de Gran Canaria. Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’alta risoluzione nel telerilevamento termico (Thermal Remote Sensing) da aereo o satellitare si rivela molto importante nell’analisi del comportamento termico delle superfici, in particolare per lo studio dei fenomeni climatici locali dello spazio urbano. La stato termico dell'ambiente urbano è oggi motivo di grande interesse per ricercatori, organi istituzionali e cittadini. Uno dei maggiori campi di studio del comportamento termico urbano interessa il problema energetico: la riduzione dei consumi e delle emissioni di CO2 è un obiettivo primario da perseguire per uno sviluppo sostenibile, spesso supportato da criteri legislativi e progetti comunitari. Su scala differente e con caratteristiche differenti, un altro degli argomenti che scuote da anni e con notevole interesse la ricerca scientifica, è il fenomeno termico urbano che prende il nome di isola di calore; questa si sviluppa non solo in conseguenza al calore sensibile rilasciato da attività antropiche, ma anche a causa della sempre maggiore conversione del territorio rurale in urbanizzato (inurbamento), con conseguente riduzione del fenomeno dell’evapotraspirazione. Oggetto di questa dissertazione è lo studio del comportamento termico delle superfici in ambito urbano, sperimentato sulla città di Bologna. Il primo capitolo si interessa dei principi e delle leggi fisiche sui quali è basato il telerilevamento effettuato nelle bende spettrali dell’infrarosso termico. Viene data una definizione di temperatura radiometrica e cinematica, tra loro legate dall’emissività. Vengono esposti i concetti di risoluzione (geometrica, radiometrica, temporale e spettrale) dell’immagine termica e viene data descrizione dei principali sensori su piattaforma spaziale per l’alta risoluzione nel TIR (ASTER e Landsat). Il secondo capitolo si apre con la definizione di LST (Land Surface Temperature), parametro del terreno misurato col telerilevamento, e ne viene descritta la dipendenza dal flusso della radiazione in atmosfera e dalle condizioni di bilancio termico della superficie investigata. Per la sua determinazione vengono proposti metodi diversi in funzione del numero di osservazioni disponibili nelle diverse bande spettrali dell’IR termico. In chiusura sono discussi i parametri che ne caratterizzano la variabilità. Il capitolo terzo entra nel dettaglio del telerilevamento termico in ambito urbano, definendo il fenomeno dell’Urban Heat Island su tutti i livelli atmosferici interessati, fornendo un quadro di operabilità con gli strumenti moderni di rilievo alle differenti scale (analisi multiscala). Un esempio concreto di studio multiscala dei fenomeni termici urbani è il progetto europeo EnergyCity, volto a ridurre i consumi energetici e le emissioni di gas serra di alcune città del centro Europa. Il capitolo quarto riporta la sperimentazione condotta sull’isola di calore urbana della città di Bologna tramite immagini ASTER con risoluzione spaziale 90 m nel TIR e ricampionate a 15 m dal VIS. Lo studio dell’isola di calore si è effettuata a partire dal calcolo della Land Surface Temperature utilizzando valori di emissività derivati da classificazione delle superfici al suolo. Per la validazione dei dati, in alternativa alle stazioni di monitoraggio fisse dell’ARPA, presenti nell’area metropolitana della città, si è sperimentato l’utilizzo di data-loggers per il rilievo di temperatura con possibilità di campionamento a 2 sec. installati su veicoli mobili, strumentati con ricevitori GPS, per la misura dei profili di temperatura atmosferica near-ground lungo transetti di attraversamento della città in direzione est-ovest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Diplomarbeit erfolgte die Beobachtung von Eisströmen und Schelfeisen an der Küste der Amundsen See in der West-Antarktis, unter Verwendung von ERS-SAR-Amplitudenbildprodukten. Bestandteile dieser Beobachtung waren die Erstellung eines Gletscherinventares, die Erstellung von Multitemporalbildern, die Auswertung von Veränderungen der Eisfronpositionen und - schwerpunktmäßig - die Bestimmung von Eisfließgeschwindigkeiten und deren räumlicher und zeitlicher Vergleich.