986 resultados para Methods: laboratory: molecular
Resumo:
A total of 106 women with vaginitis in Nicaragua were studied. The positive rate for the identification of Candida species was 41% (44 positive cultures out of 106 women with vaginitis). The sensitivity of microscopic examination of wet mount with the potassium hydroxide (KOH) was 61% and 70% with Gram's stain when using the culture of vaginal fluid as gold standard for diagnosis of candidiasis. Among the 44 positives cultures, isolated species of yeast from vaginal swabs were C. albicans (59%), C. tropicalis (23%), C. glabrata (14%) and C. krusei (4%). This study reports the first characterization of 26 C. albicans stocks from Nicaragua by the random amplified polymorphic DNA method. The genetic analysis in this small C. albicans population showed the existence of linkage disequilibrium, which is consistent with the hypothesis that C. albicans undergoes a clonal propagation.
Laboratory diagnosis of Schistosomiasis in areas of low transmission: a review of a line of research
Resumo:
After 57 years of successful control of schistosomiasis in Venezuela, the prevalence and intensity of infection have declined. Approximately 80% of the individuals eliminate less than 100 eggs/g of stools, therefore morbidity is mild and the majority are asymptomatic. The sensitivity of Kato-Katz decreases to approximately 60%. Available serological methods for the detection of circulating antigens only reach a 70% of sensitivity. Tests based on the detection of antibodies by immunoenzymatic assays have been improved. The circumoval precipitine test has shown a high sensitivity (97%), specificity (100%), and correlation with oviposition, being considered the best confirmatory diagnostic test. Additionally to the classical immunoenzymatic assays, the development of the alkaline phosphatase immunoassay, allowed to reach a 100% specificity with an 89% sensitivity. Recently, we have developed a modified ELISA in which the soluble egg antigen is treated with sodium metaperiodate (SMP-ELISA) in order to eliminate the glycosilated epitopes responsible for the false positive reactions. The specificity and sensitivity reaches 97% and 99%, respectively. Synthetic peptides from the excretory-secretory enzymes, cathepsin B (Sm31) legumain (Sm32) and cathepsin D (Sm45), have been synthesized. The combination of two peptides derived from the Sm31 have been evaluated, reaching a sensitivity of 96% when analyzed independently and with a 100% specificity. Antibodies raised in rabbits against peptides derived from the Sm31 and Sm32 are currently evaluated in two different antigen-capture-based assays. The development of a simple, cheap and reliable test that correlates with parasite activity is a major goal.
Resumo:
Mycobacterium tuberculosis strains resistant to streptomycin (SM), isoniazid (INH), and/or rifampin (RIF) as determined by the conventional Löwenstein-Jensen proportion method (LJPM) were compared with the E test, a minimum inhibitory concentration susceptibility method. Discrepant isolates were further evaluated by BACTEC and by DNA sequence analyses for mutations in genes most often associated with resistance to these drugs (rpsL, katG, inhA, and rpoB). Preliminary discordant E test results were seen in 75% of isolates resistant to SM and in 11% to INH. Discordance improved for these two drugs (63%) for SM and none for INH when isolates were re-tested but worsened for RIF (30%). Despite good agreement between phenotypic results and sequencing analyses, wild type profiles were detected on resistant strains mainly for SM and INH. It should be aware that susceptible isolates according to molecular methods might contain other mechanisms of resistance. Although reproducibility of the LJPM susceptibility method has been established, variable E test results for some M. tuberculosis isolates poses questions regarding its reproducibility particularly the impact of E test performance which may vary among laboratories despite adherence to recommended protocols. Further studies must be done to enlarge the evaluated samples and looked possible mutations outside of the hot spot sequenced gene among discrepant strains.
Resumo:
Mycobacterium kansasii is the most common cause of pulmonary nontuberculous mycobacteria infection and classical identification of this pathogen needs a time consuming phenotypic tests. Polymerase chain reaction-restriction fragment lenght polymorphism analysis (PRA) of the gene enconding for the 65kDa heat shock (hsp65) protein offers an easy, rapid, and inexpensive procedure to identify and subtype M. kansasii isolates. In the present study, we performed a retrospective analysis of patients who had mycobacteria identified on the basis of phenotypic tests by means of a review of database at Mycobacteria Laboratory of the Instituto Adolfo Lutz in the period 1995-1998. A total of 9381 clinical isolates were analyzed of which 7777 (82.9%) were identified as M. tuberculosis complex and 1604 (17.1%) as nontuberculous mycobacteria. Of the 296 M. kansasii isolates, 189 (63.8%) isolates obtained from 119 patients were viable and were analyzed by PRA-hsp65. Hundred eight two (98.9%) were classified as M. kansasii type I. Two isolates were classified as type II and III and five isolates were characterized as other Mycobacterium species. Clinical isolates of M. kansasii in the state of São Paulo was almost exclusively subtype I regardless of HIV status.
Resumo:
Mycobacterium tuberculosis complex (MTBC) members are causative agents of human and animal tuberculosis. Differentiation of MTBC members is required for appropriate treatment of individual patients and for epidemiological purposes. Strains from six MTBC species - M. tuberculosis, M. bovis subsp. bovis, M. bovis BCG, M. africanum, M. pinnipedii, and "M. canetti" - were studied using gyrB-restriction fragment length polymorphism (gyrB-RFLP) analysis. A table was elaborated, based on observed restriction patterns and published gyrB sequences. To evaluate applicability of gyrB-RFLP at Instituto Adolfo Lutz, São Paulo, Mycobacterial Reference Laboratory, 311 MTBC clinical isolates, previously identified using traditional methods as M. tuberculosis (306), M. bovis (3), and M. bovis BCG (2), were analyzed by gyrB-RFLP. All isolates were correctly identified by the molecular method, but no distinction between M. bovis and M. bovis BCG was obtained. Differentiation of M. tuberculosis and M. bovis is of utmost importance, because they require different treatment schedules. In conclusion, gyrB-RFLP is accurate and easy-to-perform, with potential to reduce time needed for conventional differentiation methods. However, application for epidemiological studies remains limited, because it cannot differentiate M. tuberculosis from M. africanum subtype II, and "M. canetti", M. africanum subtype I from M. pinnipedii, and. M. bovis from M. bovis BCG.
Resumo:
Coagulase-negative staphylococci (CNS) species identification is still difficult for most clinical laboratories. The scheme proposed by Kloos and Schleifer and modified by Bannerman is the reference method used for the identification of staphylococcal species and subspecies; however, this method is relatively laborious for routine use since it requires the utilization of a large number of biochemical tests. The objective of the present study was to compare four methods, i.e., the reference method, the API Staph system (bioMérieux) and two methods modified from the reference method in our laboratory (simplified method and disk method), in the identification of 100 CNS strains. Compared to the reference method, the simplified method and disk method correctly identified 100 and 99% of the CNS species, respectively, while this rate was 84% for the API Staph system. Inaccurate identification by the API Staph method was observed for Staphylococcus epidermidis (2.2%), S. hominis (25%), S. haemolyticus (37.5%), and S. warneri (47.1%). The simplified method using the simple identification scheme proposed in the present study was found to be efficient for all strains tested, with 100% sensitivity and specificity and proved to be available alternative for the identification of staphylococci, offering, higher reliability and lower cost than the currently available commercial systems. This method would be very useful in clinical microbiology laboratory, especially in places with limited resources.
Resumo:
PURPOSE: To study phenotype-genotype correlation in patients who have retinoma, which is a benign tumor resembling the post irradiation regression pattern of retinoblastoma (RB). METHODS: We selected patients who had retinoma and positive family history for RB and patients who had retinoma in one eye and either retinoma or RB in the other eye. The study included 22 patients with available DNA: 18 from 11 families and four sporadic cases. DNA was extracted from peripheral blood leukocytes. The RB1 gene was screened by DHPLC and direct sequencing of the promoter and all the exons. RESULTS: We identified 17 occurrences of 11 distinct germline mutations in two sporadic and in 15 familial cases (nine families). The 11 identified mutations were located in exons 1, 10,11,13,14, and 19 to 23. Four of the identified mutations were not previously reported, including g.64407delT, g.153236A>T, g.156743delTCTG, and g.162078delA. Eight out the 11 mutations were truncating and three were nontruncating (missense). There was no correlation between the type of mutation and the number of tumor foci per eye (RB or retinomas). Highly heterogeneous intrafamilial expressivity was observed. CONCLUSIONS: To our knowledge, this study is the largest series of mutations of consecutive retinoma patients. The present data suggest that the type of inherited mutations underlying retinoma is undistinguishable from RB related ones, i.e., largely dominated by truncating mutants. This finding is in contrast with the RB1 genotypic spectrum of mutations associated with low-penetrance RB, i.e., nontruncating mutants. The molecular mechanism underlying low-penetrance and attenuated expressivity (retinomas) appeared to be distinct.
Resumo:
Since the 1990's, cheating athletes have abused substances to increase their oxygen transport capabilities; among these substances, recombinant EPO is the most well known. Currently, other investigational pharmaceutical products are able to produce an effect similar to EPO but without having chemical structures related to EPO; these are the synthetic erythropoiesis stimulating agents (ESAs). Peginesatide (also known as Hematide?) is being developed by Affymax and Takeda and, if approved by regulatory authorities, could soon be released on the international market. To detect potential athletic abuse of this product and deter athletes who consider cheating, we initiated a collaboration to implement a detection test for anti-doping purposes. Peginesatide is a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent that is designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis. It is undetectable using current anti-doping tests due to its lack of sequence homology to EPO. To detect and deter potential abuse of peginesatide, we initiated an industry/antidoping laboratory collaboration to develop and validate screening and confirmation assays so that they would be available before peginesatide reaches the market. We describe a screening ELISA and a confirmation assay consisting of immune-purification followed by separation with SDS-PAGE and revelation with Western double blotting. Both assays can detect 0.5 ng/mL concentrations of peginesatide in blood samples, enabling detection for several days after administration of a physiologically relevant dose. This initial report describes experimental characterization of these assays, including testing with a blinded set of samples from a clinical study conducted in healthy volunteers.
Resumo:
The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.
Resumo:
Background: The purpose of the work reported here is to test reliable molecular profiles using routinely processed formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-up of 60 months. Methods: RNA from fresh frozen (FF) and FFPE tumor samples of 82 patients were used for quality control, and independent FFPE tissues of 342 postmenopausal participants of BIG 1-98 with ER-positive cancer were analyzed by measuring prospectively selected genes and computing scores representing the functions of the estrogen receptor (eight genes, ER_8), the progesterone receptor (five genes, PGR_5), Her2 (two genes, HER2_2), and proliferation (ten genes, PRO_10) by quantitative reverse transcription PCR (qRT-PCR) on TaqMan Low Density Arrays. Molecular scores were computed for each category and ER_8, PGR_5, HER2_2, and PRO_10 scores were combined into a RISK_25 score. Results: Pearson correlation coefficients between FF- and FFPE-derived scores were at least 0.94 and high concordance was observed between molecular scores and immunohistochemical data. The HER2_2, PGR_ 5, PRO_10 and RISK_25 scores were significant predictors of disease free-survival (DFS) in univariate Cox proportional hazard regression. PRO_10 and RISK_25 scores predicted DFS in patients with histological grade II breast cancer and in lymph node positive disease. The PRO_10 and PGR_ 5 scores were independent predictors of DFS in multivariate Cox regression models incorporating clinical risk indicators; PRO_10 outperformed Ki-67 labeling index in multivariate Cox proportional hazard analyses. Conclusions: Scores representing the endocrine responsiveness and proliferation status of breast cancers were developed from gene expression analyses based on RNA derived from FFPE tissues. The validation of the molecular scores with tumor samples of participants of the BIG 1-98 trial demonstrates that such scores can serve as independent prognostic factors to estimate disease free survival (DFS) in postmenopausal patients with estrogen receptor positive breast cancer.
Resumo:
The primary goal of this study was to design a fluorescent E-selectin-targeted iodine-containing liposome for specific E-selectin imaging with the use of micro-CT. The secondary goal was to correlate the results of micro-CT imaging with other imaging techniques with cellular resolution, i.e., confocal and intravital microscopy. E-selectin-targeted liposomes were tested on endothelial cells in culture and in vivo in HT-29 tumor-bearing mice (n = 12). The liposomes contained iodine (as micro-CT contrast medium) and fluorophore (as optical contrast medium) for confocal and intravital microscopy. Optical imaging methods were used to confirm at the cellular level, the observations made with micro-CT. An ischemia-reperfusion model was used to trigger neovessel formation for intravital imaging. The E-selectin-targeted liposomes were avidly taken up by activated endothelial cells, whereas nontargeted liposomes were not. Direct binding of the E-selectin-targeted liposomes was proved by intravital microscopy, where bright spots clearly appeared on the activated vessels. Micro-CT imaging also demonstrated accumulation of the targeted lipsomes into subcutaneous tumor by an increase of 32 +/- 8 HU. Hence, internalization by activated endothelial cells was rapid and mediated by E-selectin. We conclude that micro-CT associated with specific molecular contrast agent is able to detect specific molecular markers on activated vessel walls in vivo.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
A study was carried out to compare the performance of a commercial method (MGIT) and four inexpensive drug susceptibility methods: nitrate reductase assay (NRA), microscopic observation drug susceptibility (MODS) assay, MTT test, and broth microdilution method (BMM). A total of 64 clinical isolates of Mycobacterium tuberculosis were studied. The Lowenstein-Jensen proportion method (PM) was used as gold standard. MGIT, NRA, MODS, and MTT results were available on an average of less than 10 days, whereas BMM results could be reported in about 20 days. Most of the evaluated tests showed excellent performance for isoniazid and rifampicin, with sensitivity and specificity values > 90%. With most of the assays, sensitivity for ethambutol was low (62-87%) whereas for streptomycin, sensitivity values ranged from 84 to 100%; NRA-discrepancies were associated with cultures with a low proportion of EMB-resistant organisms while most discrepancies with quantitative tests (MMT and BMM) were seen with isolates whose minimal inhibitory concentrations fell close the cutoff. MGIT is reliable but still expensive. NRA is the most inexpensive and easiest method to perform without changing the organization of the routine PM laboratory performance. While MODS, MTT, and BMM, have the disadvantage from the point of view of biosafety, they offer the possibility of detecting partial resistant strains. This study shows a very good level of agreement of the four low-cost methods compared to the PM for rapid detection of isoniazid, rifampicin and streptomycin resistance (Kappa values > 0.8); more standardization is needed for ethambutol.
Resumo:
Diagnosis of bacterial meningitis has long been based on classical methods of Gram stain, serological tests, and culture of cerebrospinal fluid (CSF). The performance of these methods, especially culture and direct smear, is thwarted by failure to detect bacteria following administration of antimicrobial agents and reluctance to performance lumbar punctures at admission. Indeed, patients with meningitis frequently receive antibiotics orally or by injection before the diagnosis is suspected or established. Thus an alternative method has become necessary to help clinicians and epidemiologists to management and control of bacterial meningitis. We evaluate the application of a polymerase chain reaction-based (PCR) assay for amplification of pneumolysin gene (ply) to diagnosis of Streptococcus pneumoniae meningitis. The PCR assay sensitivity for CSF was 96% (95% confidence interval, CI, 90-99%) compared to a sensitivity of 59% for culture (95% CI 49-69%), 66% for Gram stain (95% CI 56-74%), and 78% for latex agglutination test (95% CI 69-86%); PCR specificity was 100% (95% CI 83-100%). PCR results were available within 4 h of the start of the assay. This molecular approach proved to be reliable and useful to identify this bacterium compared with other classical laboratory methods for identification of bacterial meningitis pathogens.
Resumo:
Taenia solium-taeniasis and cysticercosis were studied in the human and porcine populations of a rural community in the Southern Ecuadorian Andes. From the 1059 inhabitants, 800 serum samples and 958 stool samples could be collected. In addition, 646 from the estimated 1148 pigs were tongue inspected. Circulating antigen was detected by enzyme linked immunosorbent assay (Ag-ELISA) in 2.25% of the human population, whereas intestinal taeniasis was detected in 1.46% by the formalin-ether technique. Following treatment and recovery of tapeworm fragments these were all identified as T. solium. Porcine cysticercosis was diagnosed in 3.56% of the pigs by tongue inspection. In addition, enzyme linked immunoelectrotransfer blot (EITB) was performed on a subset group of 100 humans to confirm the results of the Ag-ELISA. One hundred serum samples from pigs were also analysed by EITB. It appeared that 43 and 74% of humans and pigs had antibodies against T. solium cysticerci, respectively. It is concluded that contrary to the high exposure of the human population to T. solium that is suggested by EITB, the number of active cysticercosis cases, diagnosed by Ag-ELISA, was low, which may indicate endemic stability. The further use of complementary diagnostic methods for a better understanding of the epidemiology of T. solium is suggested.