902 resultados para Medical data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Over the last years, the number of available informatics resources in medicine has grown exponentially. While specific inventories of such resources have already begun to be developed for Bioinformatics (BI), comparable inventories are as yet not available for Medical Informatics (MI) field, so that locating and accessing them currently remains a hard and time-consuming task. Description. We have created a repository of MI resources from the scientific literature, providing free access to its contents through a web-based service. Relevant information describing the resources is automatically extracted from manuscripts published in top-ranked MI journals. We used a pattern matching approach to detect the resources? names and their main features. Detected resources are classified according to three different criteria: functionality, resource type and domain. To facilitate these tasks, we have built three different taxonomies by following a novel approach based on folksonomies and social tagging. We adopted the terminology most frequently used by MI researchers in their publications to create the concepts and hierarchical relationships belonging to the taxonomies. The classification algorithm identifies the categories associated to resources and annotates them accordingly. The database is then populated with this data after manual curation and validation. Conclusions. We have created an online repository of MI resources to assist researchers in locating and accessing the most suitable resources to perform specific tasks. The database contained 282 resources at the time of writing. We are continuing to expand the number of available resources by taking into account further publications as well as suggestions from users and resource developers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important objective of the INTEGRATE project1 is to build tools that support the efficient execution of post-genomic multi-centric clinical trials in breast cancer, which includes the automatic assessment of the eligibility of patients for available trials. The population suited to be enrolled in a trial is described by a set of free-text eligibility criteria that are both syntactically and semantically complex. At the same time, the assessment of the eligibility of a patient for a trial requires the (machineprocessable) understanding of the semantics of the eligibility criteria in order to further evaluate if the patient data available for example in the hospital EHR satisfies these criteria. This paper presents an analysis of the semantics of the clinical trial eligibility criteria based on relevant medical ontologies in the clinical research domain: SNOMED-CT, LOINC, MedDRA. We detect subsets of these widely-adopted ontologies that characterize the semantics of the eligibility criteria of trials in various clinical domains and compare these sets. Next, we evaluate the occurrence frequency of the concepts in the concrete case of breast cancer (which is our first application domain) in order to provide meaningful priorities for the task of binding/mapping these ontology concepts to the actual patient data. We further assess the effort required to extend our approach to new domains in terms of additional semantic mappings that need to be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual reality (VR) techniques to understand and obtain conclusions of data in an easy way are being used by the scientific community. However, these techniques are not used frequently for analyzing large amounts of data in life sciences, particularly in genomics, due to the high complexity of data (curse of dimensionality). Nevertheless, new approaches that allow to bring out the real important data characteristics, arise the possibility of constructing VR spaces to visually understand the intrinsic nature of data. It is well known the benefits of representing high dimensional data in tridimensional spaces by means of dimensionality reduction and transformation techniques, complemented with a strong component of interaction methods. Thus, a novel framework, designed for helping to visualize and interact with data about diseases, is presented. In this paper, the framework is applied to the Van't Veer breast cancer dataset is used, while oncologists from La Paz Hospital (Madrid) are interacting with the obtained results. That is to say a first attempt to generate a visually tangible model of breast cancer disease in order to support the experience of oncologists is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While a number of virtual data-gloves have been used in stroke, there is little evidence about their use in spinal cord injury (SCI). A pilot clinical experience with nine SCI subjects was performed comparing two groups: one carried out a virtual rehabilitation training based on the use of a data glove, CyberTouch combined with traditional rehabilitation, during 30 minutes a day twice a week along two weeks; while the other made only conventional rehabilitation. Furthermore, two functional indexes were developed in order to assess the patient’s performance of the sessions: normalized trajectory lengths and repeatability. While differences between groups were not statistically significant, the data-glove group seemed to obtain better results in the muscle balance and functional parameters, and in the dexterity, coordination and fine grip tests. Related to the indexes that we implemented, normalized trajectory lengths and repeatability, every patient showed an improvement in at least one of the indexes, either along Y-axis trajectory or Z-axis trajectory. This study might be a step in investigating new ways of treatments and objective measures in order to obtain more accurate data about the patient’s evolution, allowing the clinicians to develop rehabilitation treatments, adapted to the abilities and needs of the patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent commentaries have proposed the advantages of using open exchange of data and informatics resources for improving health-related policies and patient care in Africa. Yet, in many African regions, both private medical and public health information systems are still unaffordable. Open exchange over the social Web 2.0 could encourage more altruistic support of medical initiatives. We have carried out some experiments to demonstrate the feasibility of using this approach to disseminate open data and informatics resources in Africa. After the experiments we developed the AFRICA BUILD Portal, the first Social Network for African biomedical researchers. Through the AFRICA BUILD Portal users can access in a transparent way to several resources. Currently, over 600 researchers are using distributed and open resources through this platform committed to low connections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Funding The International Primary Care Respiratory Group (IPCRG) provided funding for this research project as an UNLOCK group study for which the funding was obtained through an unrestricted grant by Novartis AG, Basel, Switzerland. The latter funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Database access for the OPCRD was provided by the Respiratory Effectiveness Group (REG) and Research in Real Life; the OPCRD statistical analysis was funded by REG. The Bocholtz Study was funded by PICASSO for COPD, an initiative of Boehringer Ingelheim, Pfizer and the Caphri Research Institute, Maastricht University, The Netherlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Funded by COST (European Cooperation in Science and Technology) CEH projects. Grant Numbers: NEC05264, NEC05100 Natural Environment Research Council UK. Grant Number: NE/J008001/1 © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Funding A Health Systems Research Initiative Development Grant from the UK Department for International Development (DFID), Economic and Social Research Council (ESRC), Medical Research Council (MRC (and the Wellcome Trust (MR/N005597/1) funds the research presented in this paper. Support for the Agincourt HDSS including verbal autopsies was provided by The Wellcome Trust, UK (grants 058893/Z/99/A; 069683/Z/02/Z; 085477/Z/08/Z; 085477/B/08/Z), and the University of the Witwatersrand and Medical Research Council, South Africa.