963 resultados para Medical Image Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/com_images/1009/thumbnail.jpg

Relevância:

30.00% 30.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/com_images/1008/thumbnail.jpg

Relevância:

30.00% 30.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/com_images/1007/thumbnail.jpg

Relevância:

30.00% 30.00%

Publicador:

Resumo:

http://digitalcommons.fiu.edu/com_images/1006/thumbnail.jpg

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A database of representative BRDF and BPDF derived from the POLDER measurements. From the huge amount of data acquired by the spaceborne instrument over a period of 7 years, we selected a set of targets with high quality observations. The selection aimed at a large number of observations, free of cloud or aerosol contamination, acquired in diverse observation geometry with a focus on the backscatter direction that shows the specific Hot-Spot signature. The targets are sorted according to the 16-classes IGBP land cover classification system and the target selection aims at a spatial representativeness within the class. The database thus provides a set of high quality BRDF and BPDF samples that can be used to assess the typical variability of natural surface reflectances or to evaluate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and effective approaches of dealing with the vast amount of visual information available nowadays are highly sought after. This is particularly the case for image collections, both personal and commercial. Due to the magnitude of these ever expanding image repositories, annotation of all images images is infeasible, and search in such an image collection therefore becomes inherently difficult. Although content-based image retrieval techniques have shown much potential, such approaches also suffer from various problems making it difficult to adopt them in practice. In this paper, we follow a different approach, namely that of browsing image databases for image retrieval. In our Honeycomb Image Browser, large image databases are visualised on a hexagonal lattice with image thumbnails occupying hexagons. Arranged in a space filling manner, visually similar images are located close together enabling large image datasets to be navigated in a hierarchical manner. Various browsing tools are incorporated to allow for interactive exploration of the database. Experimental results confirm that our approach affords efficient image retrieval. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computed tomography (CT) is a valuable technology to the healthcare enterprise as evidenced by the more than 70 million CT exams performed every year. As a result, CT has become the largest contributor to population doses amongst all medical imaging modalities that utilize man-made ionizing radiation. Acknowledging the fact that ionizing radiation poses a health risk, there exists the need to strike a balance between diagnostic benefit and radiation dose. Thus, to ensure that CT scanners are optimally used in the clinic, an understanding and characterization of image quality and radiation dose are essential.

The state-of-the-art in both image quality characterization and radiation dose estimation in CT are dependent on phantom based measurements reflective of systems and protocols. For image quality characterization, measurements are performed on inserts imbedded in static phantoms and the results are ascribed to clinical CT images. However, the key objective for image quality assessment should be its quantification in clinical images; that is the only characterization of image quality that clinically matters as it is most directly related to the actual quality of clinical images. Moreover, for dose estimation, phantom based dose metrics, such as CT dose index (CTDI) and size specific dose estimates (SSDE), are measured by the scanner and referenced as an indicator for radiation exposure. However, CTDI and SSDE are surrogates for dose, rather than dose per-se.

Currently there are several software packages that track the CTDI and SSDE associated with individual CT examinations. This is primarily the result of two causes. The first is due to bureaucracies and governments pressuring clinics and hospitals to monitor the radiation exposure to individuals in our society. The second is due to the personal concerns of patients who are curious about the health risks associated with the ionizing radiation exposure they receive as a result of their diagnostic procedures.

An idea that resonates with clinical imaging physicists is that patients come to the clinic to acquire quality images so they can receive a proper diagnosis, not to be exposed to ionizing radiation. Thus, while it is important to monitor the dose to patients undergoing CT examinations, it is equally, if not more important to monitor the image quality of the clinical images generated by the CT scanners throughout the hospital.

The purposes of the work presented in this thesis are threefold: (1) to develop and validate a fully automated technique to measure spatial resolution in clinical CT images, (2) to develop and validate a fully automated technique to measure image contrast in clinical CT images, and (3) to develop a fully automated technique to estimate radiation dose (not surrogates for dose) from a variety of clinical CT protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective is to investigate the main factors contributing to GMS expenditure on pharmaceutical prescribing and projecting this expenditure to 2026. This study is located in the area of pharmacoeconomic cost containment and projections literature. The thesis has five main aims: 1. To determine the main factors contributing to GMS expenditure on pharmaceutical prescribing. 2. To develop a model to project GMS prescribing expenditure in five year intervals to 2026, using 2006 Central Statistics Office (CSO) Census data and 2007 Health Service Executive{Primary Care Reimbursement Service (HSE{PCRS) sample data. 3. To develop a model to project GMS prescribing expenditure in five year intervals to 2026, using 2012 HSE{PCRS population data, incorporating cost containment measures, and 2011 CSO Census data. 4. To investigate the impact of demographic factors and the pharmacology of drugs (Anatomical Therapeutic Chemical (ATC)) on GMS expenditure. 5. To explore the consequences of GMS policy changes on prescribing expenditure and behaviour between 2008 and 2014. The thesis is centered around three published articles and is located between the end of a booming Irish economy in 2007, a recession from 2008{2013, to the beginning of a recovery in 2014. The literature identified a number of factors influencing pharmaceutical expenditure, including population growth, population aging, changes in drug utilisation and drug therapies, age, gender and location. The literature identified the methods previously used in predictive modelling and consequently, the Monte Carlo Simulation (MCS) model was used to simulate projected expenditures to 2026. Also, the literature guided the use of Ordinary Least Squares (OLS) regression in determining demographic and pharmacology factors influencing prescribing expenditure. The study commences against a backdrop of growing GMS prescribing costs, which has risen from e250 million in 1998 to over e1 billion by 2007. Using a sample 2007 HSE{PCRS prescribing data (n=192,000) and CSO population data from 2008, (Conway et al., 2014) estimated GMS prescribing expenditure could rise to e2 billion by2026. The cogency of these findings was impacted by the global economic crisis of 2008, which resulted in a sharp contraction in the Irish economy, mounting fiscal deficits resulting in Ireland's entry to a bailout programme. The sustainability of funding community drug schemes, such as the GMS, came under the spotlight of the EU, IMF, ECB (Trioka), who set stringent targets for reducing drug costs, as conditions of the bailout programme. Cost containment measures included: the introduction of income eligibility limits for GP visit cards and medical cards for those aged 70 and over, introduction of co{payments for prescription items, reductions in wholesale mark{up and pharmacy dispensing fees. Projections for GMS expenditure were reevaluated using 2012 HSE{PCRS prescribing population data and CSO population data based on Census 2011. Taking into account both cost containment measures and revised population predictions, GMS expenditure is estimated to increase by 64%, from e1.1 billion in 2016 to e1.8 billion by 2026, (ConwayLenihan and Woods, 2015). In the final paper, a cross{sectional study was carried out on HSE{PCRS population prescribing database (n=1.63 million claimants) to investigate the impact of demographic factors, and the pharmacology of the drugs, on GMS prescribing expenditure. Those aged over 75 (ẞ = 1:195) and cardiovascular prescribing (ẞ = 1:193) were the greatest contributors to annual GMS prescribing costs. Respiratory drugs (Montelukast) recorded the highest proportion and expenditure for GMS claimants under the age of 15. Drugs prescribed for the nervous system (Escitalopram, Olanzapine and Pregabalin) were highest for those between 16 and 64 years with cardiovascular drugs (Statins) were highest for those aged over 65. Females are more expensive than males and are prescribed more items across the four ATC groups, except among children under 11, (ConwayLenihan et al., 2016). This research indicates that growth in the proportion of the elderly claimants and associated levels of cardiovascular prescribing, particularly for statins, will present difficulties for Ireland in terms of cost containment. Whilst policies aimed at cost containment (co{payment charges, generic substitution, reference pricing, adjustments to GMS eligibility) can be used to curtail expenditure, health promotional programs and educational interventions should be given equal emphasis. Also policies intended to affect physicians prescribing behaviour include guidelines, information (about price and less expensive alternatives) and feedback, and the use of budgetary restrictions could yield savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.