969 resultados para Mechanical components
Resumo:
Large-area PVDF thin films have been prepared and characterized for quasi-static and high frequency dynamic strain sensing applications. These films are prepared using hot press method and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The fabricated films have been characterized for quasi-static strain sensing and the linear strain-voltage relationship obtained is promising. In order to evaluate the ultrasonic sensing properties, a PZT wafer has been used to launch Lamb waves in a metal beam on which the PVDF film sensor is bonded at a distance. The voltage signals obtained from the PVDF films have been compared with another PZT wafer sensor placed on the opposite surface of the beam as a reference signal. Due to higher stiffness and higher thickness of the PZT wafer sensors, certain resonance patterns significantly degrade the sensor sensitivity curves. Whereas, the present results show that the large-area PVDF sensors can be superior with the signal amplitude comparable to that of PZT sensors and with no resonance-induced effect, which is due to low mechanical impedance, smaller thickness and larger area of the PVDF film. Moreover, the developed PVDF sensors are able to capture both A(0) and S-0 modes of Lamb wave, whereas the PZT sensors captures only A(0) mode in the same scale of voltage output. This shows promises in using large-area PVDF films with various surface patterns on structures for distributed sensing and structural health monitoring under quasi-static, vibration and ultrasonic situations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate powder and tablet behavior at the level of mechanical interactions between single particles. Various aspects of powder packing, mixing, compression, and bond formation were examined with the aid of computer simulations. The packing and mixing simulations were based on spring forces interacting between particles. Packing and breakage simulations included systems in which permanent bonds were formed and broken between particles, based on their interaction strengths. During the process, a new simulation environment based on Newtonian mechanics and elementary interactions between the particles was created, and a new method for evaluating mixing was developed. Powder behavior is a complicated process, and many of its aspects are still unclear. Powders as a whole exhibit some aspects of solids and others of liquids. Therefore, their physics is far from clear. However, using relatively simple models based on particle-particle interaction, many powder properties could be replicated during this work. Simulated packing densities were similar to values reported in the literature. The method developed for describing powder mixing correlated well with previous methods. The new method can be applied to determine mixing in completely homogeneous materials, without dividing them into different components. As such, it can describe the efficiency of the mixing method, regardless of the powder's initial setup. The mixing efficiency at different vibrations was examined, and we found that certain combinations of amplitude, direction, and frequencies resulted in better mixing while using less energy. Simulations using exponential force potentials between particles were able to explain the elementary compression behavior of tablets, and create force distributions that were similar to the pressure distributions reported in the literature. Tablet-breaking simulations resulted in breaking strengths that were similar to measured tablet breaking strengths. In general, many aspects of powder behavior can be explained with mechanical interactions at the particle level, and single particle properties can be reliably linked to powder behavior with accurate simulations.
Resumo:
Cast aluminium alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40µm – 120µm) the tensile and compression strengths of aluminium alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work [2] shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/mm2 and compression strength of 28 kg/mm2 performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminium-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.
Resumo:
An investigation of the initiation and growth of erosion and of the effect of velocity and pressure on erosion in a rotating disk is presented. Also, the role of an intervening noncavitating period on erosion is studied. The results indicate that at high intensities the peak rate of erosion decreases with increases in pressure. The erosion rate/time curves obtained for metallic materials are explained by the eroded particle distribution and the cavity size. The average size of the eroded particles decreased when pressure and tensile strength of the material were increased. The erosion rate peaked after an intervening noncavitating period. The use of the rate of erosion, defined as an average over the entire test duration, in the equation governing the theory of erosion resulted in reasonably good correlations. The correlations reveal that it is possible to predict the length, width, and area of a cavity when the cavitation parameter σ is known. The normalized width of a cavity may be estimated if its normalized length is known.
Resumo:
A performance prediction procedure is presented for low specific speed submersible pumps with a review of loss models given in the literature. Most of the loss theories discussed in this paper are one dimensional and improvements are made with good empiricism for the prediction to cover the entire range of operation of the low specific speed pumps. Loss correlations, particularly in the low flow range, are discussed. Prediction of the shape of efficiency-capacity and total head-capacity curves agrees well with the experimental results in almost the full range of operating conditions. The approach adopted in the present analysis, of estimating the losses in the individual components of a pump, provides means for improving the performance and identifying the problem areas in existing designs of the pumps. The investigation also provides a basis for selection of parameters for the optimal design of the pumps in which the maximum efficiency is an important design parameter. The scope for improvement in the prediction procedure with the nature of flow phenomena in the low flow region has been discussed in detail.
Resumo:
The electroslag refining technique is one of the modern tools which is capable of imparting superior mechanical and chemical properties to metals and alloys. Refining usually results in the elimination of a number of casting or solidification defects, such as shrinkage porosity, gas porosity, pipe, micro- and macro segregation. Remelting also imparts a directional grain structure apart from refining the size of the inclusions, grains and precipitates. This technique has over the years been used widely and successfully to improve the mechanical and chemical properties of steels and alloy steels which are used in the nuclear, missile, aerospace and marine industries for certain critical applications. But the application of ESR to aluminium and its alloys is only recent. This paper investigates the response of an aluminium alloy (corresponding to the Indian Specification IS: 7670) to ESR. Based on theoretical considerations and microstructural evidence it elucidates how ESR of aluminium alloys differs from that of ferrous alloys. The improvement achieved in mechanical properties of the alloy is correlated with the microstructure.
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.
Resumo:
Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).
Resumo:
The effect of substrate and annealing temperatures on mechanical properties of Ti-rich NiTi films deposited on Si (100) substrates by DC magnetron sputtering was studied by nanoindentation. NiTi films were deposited at two substrate temperatures viz. 300 and 400 degrees C. NiTi films deposited at 300 degrees C were annealed for 4 h at four different temperatures, i.e. 300, 400, 500 and 600 degrees C whereas films deposited at 400 degrees C were annealed for 4 h at three different temperatures, i.e. 400, 500 and 600 degrees C. The elastic modulus and hardness of the films were found to be the same in the as-deposited as well as annealed conditions for both substrate temperatures. For a given substrate temperature, the hardness and elastic modulus were found to remain unchanged as long as the films were amorphous. However, both elastic modulus and hardness showed an increase with increasing annealing temperature as the films become crystalline. The results were explained on the basis of the change in microstructure of the film with change in annealing temperature.
Resumo:
Mechanical alloying (MA) pioneered by Benjamin is a technique for the extension of solid solubility in systems where the equilibrium solid solubility is limited. This technique has, in recent years, emerged as a novel alternate route for rapid solidification processing (RSP) for the production of metastable crystalline, quasicrystalline, amorphous phases and nanocrystalline materials. The glass-forming composition range (GFR), in general, is found to be much wider in case of MA in comparison with RSP. The amorphous powders produced by MA can be compacted to bulk shapes and sizes and can be used as precursors to obtain high strength materials. This paper reports the work done on solid state amorphization by MA in Ti-Ni-Cu and Al-Ti systems where a wide GFR has been obtained. Al-Ti is a classic case where no glass formation has been observed by RSP, while a GFR of 25–90 at.% Ti has been obtained in this system, thus demonstrating the superiority of MA over RSP. The free energy calculations made to explain GFR are also presented.
Resumo:
Copolyurethanes of hydroxy terminated polybutadiene (HTPB) and ISRO–Polyol (ISPO), an indigenously developed castor-oil based polyol, have been prepared using toluene diiso-cyanate and hexamethylenediisocyanate. The mechanical strength and swelling characteristics of the copolyurethanes cured with trimethylol propane and triethanolamine have been studied to evolve improved solid propellant binders. By varying the ratios of the two hydroxy pre-polymers, chain extenders, and crosslinkers, copolyurethanes having a wide range of tensile strength and elongation could be obtained. Many of these systems are desirable for their use as propellant binders. The results have been explained in terms of the measured crosslink densities and other swelling properties. © 1993 John Wiley & Sons, Inc.
Resumo:
Cutting of Y2O3-doped TZP rods by a low-speed diamond saw introduces an unidentified, metastable phase X (x-ZrO2) coexisting with the tetragonal (t-ZrO2) and the monoclinic (m-ZrO2) phases initially present in the sample. Further mechanical deformation of the cut surface by indentation or polishing sustains the x-ZrO2. Chemical etching removes the x-ZrO2 and increases the m-ZrO2content.