972 resultados para Matrix-Splitting Scheme
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
The polar vortex of the Southern Hemisphere (SH) split dramatically during September 2002. The large-scale dynamical effects were manifest throughout the stratosphere and upper troposphere, corresponding to two distinct cyclonic centers in the upper troposphere–stratosphere system. High-resolution (T511) ECMWF analyses, supplemented by analyses from the Met Office, are used to present a detailed dynamical analysis of the event. First, the anomalous evolution of the SH polar vortex is placed in the context of the evolution that is usually witnessed during spring. Then high-resolution fields of potential vorticity (PV) from ECMWF are used to reveal several dynamical features of the split. Vortex fragments are rapidly sheared out into sheets of high (modulus) PV, which subsequently roll up into distinct synoptic-scale vortices. It is proposed that the stratospheric circulation becomes hydrodynamically unstable through a significant depth of the troposphere–stratosphere system as the polar vortex elongates.
Resumo:
Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.
Resumo:
The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.
Resumo:
A generic Nutrient Export Risk Matrix (NERM) approach is presented. This provides advice to farmers and policy makers on good practice for reducing nutrient loss and is intended to persuade them to implement such measures. Combined with a range of nutrient transport modelling tools and field experiments, NERMs can play an important role in reducing nutrient export from agricultural land. The Phosphorus Export Risk Matrix (PERM) is presented as an example NERM. The PERM integrates hydrological understanding of runoff with a number of agronomic and policy factors into a clear problem-solving framework. This allows farmers and policy makers to visualise strategies for reducing phosphorus loss through proactive land management. The risk Of Pollution is assessed by a series of informed questions relating to farming intensity and practice. This information is combined with the concept of runoff management to point towards simple, practical remedial strategies which do not compromise farmers' ability to obtain sound economic returns from their crop and livestock.
Resumo:
The Representative Soil Sampling Scheme of England and Wales has recorded information on the soil of agricultural land in England and Wales since 1969. It is a valuable source of information about the soil in the context of monitoring for sustainable agricultural development. Changes in soil nutrient status and pH were examined over the period 1971-2001. Several methods of statistical analysis were applied to data from the surveys during this period. The main focus here is on the data for 1971, 1981, 1991 and 2001. The results of examining change over time in general show that levels of potassium in the soil have increased, those of magnesium have remained fairly constant, those of phosphorus have declined and pH has changed little. Future sampling needs have been assessed in the context of monitoring, to determine the mean at a given level of confidence and tolerable error and to detect change in the mean over time at these same levels over periods of 5 and 10 years. The results of a non-hierarchical multivariate classification suggest that England and Wales could be stratified to optimize future sampling and analysis. To monitor soil quality and health more generally than for agriculture, more of the country should be sampled and a wider range of properties recorded.
Resumo:
The too diverse representation of ENSO in a coupled GCM limits one’s ability to describe future change of its properties. Several studies pointed to the key role of atmosphere feedbacks in contributing to this diversity. These feedbacks are analyzed here in two simulations of a coupled GCM that differ only by the parameterization of deep atmospheric convection and the associated clouds. Using the Kerry–Emanuel (KE) scheme in the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4; KE simulation), ENSO has about the right amplitude, whereas it is almost suppressed when using the Tiedke (TI) scheme. Quantifying both the dynamical Bjerknes feedback and the heat flux feedback in KE, TI, and the corresponding Atmospheric Model Intercomparison Project (AMIP) atmosphere-only simulations, it is shown that the suppression of ENSO in TI is due to a doubling of the damping via heat flux feedback. Because the Bjerknes positive feedback is weak in both simulations, the KE simulation exhibits the right ENSO amplitude owing to an error compensation between a too weak heat flux feedback and a too weak Bjerknes feedback. In TI, the heat flux feedback strength is closer to estimates from observations and reanalysis, leading to ENSO suppression. The shortwave heat flux and, to a lesser extent, the latent heat flux feedbacks are the dominant contributors to the change between TI and KE. The shortwave heat flux feedback differences are traced back to a modified distribution of the large-scale regimes of deep convection (negative feedback) and subsidence (positive feedback) in the east Pacific. These are further associated with the model systematic errors. It is argued that a systematic and detailed evaluation of atmosphere feedbacks during ENSO is a necessary step to fully understand its simulation in coupled GCMs.
Resumo:
Background Pharmacy aseptic units prepare and supply injectables to minimise risks. The UK National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors, including near-misses, since 2003. Objectives The cumulative reports from January 2004 to December 2007, inclusive, were analysed. Methods The different variables of product types, error types, staff making and detecting errors, stage errors detected, perceived contributory factors, and potential or actual outcomes were presented by cross-tabulation of data. Results A total of 4691 reports were submitted against an estimated 958 532 items made, returning 0.49% as the overall error rate. Most of the errors were detected before reaching patients, with only 24 detected during or after administration. The highest number of reports related to adult cytotoxic preparations (40%) and the most frequently recorded error was a labelling error (34.2%). Errors were mostly detected at first check in assembly area (46.6%). Individual staff error contributed most (78.1%) to overall errors, while errors with paediatric parenteral nutrition appeared to be blamed on low staff levels more than other products were. The majority of errors (68.6%) had no potential patient outcomes attached, while it appeared that paediatric cytotoxic products and paediatric parenteral nutrition were associated with greater levels of perceived patient harm. Conclusions The majority of reports were related to near-misses, and this study highlights scope for examining current arrangements for checking and releasing products, certainly for paediatric cytotoxic and paediatric parenteral nutrition preparations within aseptic units, but in the context of resource and capacity constraints.
Resumo:
Under the bond scheme, a pre-determined series of payments would compensate farmers for lost revenues resulting from policy change. Unlike the Single Payment Scheme, payments would be fully decoupled: recipients would not have to retain farmland, or remain in agriculture. If vested in a paper asset, the guaranteed, unencumbered, income stream would be similar to that from a government bond. Recipients could exchange this for a capital sum reflecting the net present value of future payments, and reinvest in other business ventures, either on- or offfarm.With a finite, declining flow of payments, budget expenditure would reduce, releasing funds for other uses.