957 resultados para Maoer Mountain
Resumo:
Mode of access: Internet.
Resumo:
Understanding, and controlling, the conditions under which calcite precipitates within geothermal energy production systems is a key step in maintaining production efficiency. In this study, I apply methods of bulk and clumped isotope thermometry to an operating geothermal energy facility in northern Nevada to see how those methods can better inform the facility owner, AltaRock Energy, Inc., about the occurrence of calcite scale in their power plant. I have taken water samples from five production wells, the combined generator effluent, shallow cold-water wells, monitoring wells, and surface water. I also collected calcite scale samples from within the production system. Water samples were analyzed for stable oxygen isotope composition (d18O). Calcite samples were analyzed for stable oxygen and carbon (d13C) composition, and clumped isotope composition (D47). With two exceptions, the water compositions are very similar, likely indicating common origin and a well-mixed hydrothermal system. The calcite samples are likewise similar to one another. Apparent temperatures calculated from d18O values of water and calcite are lower than those recorded for the system. Apparent temperatures calculated from D47 are several degrees higher than the recorded well temperatures. The lower temperatures from the bulk isotope data are consistent with temperatures that could be expected during a de-pressurization of the production system, which would cause boiling in the pipes, a reduction in system temperature, and rapid precipitation of calcite scale. However, the high apparent temperature indicated by the D47 data suggests that the calcite is depleted in clumped isotopes given the known temperature of the system, which is inconsistent with this hypothesis. This depletion could instead result from disequilibrium isotopic fractionation during the aforementioned boil events, which would make both the apparent d18O-based and D47-based temperatures unrepresentative of the actual water temperature. This research can help improve our understanding of how isotopic analyses can better inform us about the movement of water through geothermal systems of the past and how it now moves through modern systems. Increased understanding of water movement in these systems could potentially allow for more efficient utilization of geothermal energy as a renewable resource.
Resumo:
A new model for Archaean granitoid magmatism is presented which reconciles the most important geochemical similarities and differences between tonalite-trondhjemite-granodiorite (TTG) and potassic granitoids. Trace element abundances reveal a strong arc magmatism signature in all studied granitoids from Barberton Mountain Land. Characteristic features include HFSE depletion as well as distinct enrichment peaks of fluid-sensitive trace elements such as Pb in N-MORB normalisation, clearly indicating that all studied granitoids are derived from refertilised mantle above subduction zones. We envisage hydrous basaltic (s.l.) melts as parental liquids, which underwent extensive fractional crystallisation. Distinctive residual cumulates evolved depending on initial water content. High-H2O melts crystallised garnet/amphibole together with pyroxenes and minor plagioclase, but no olivine. This fractionation path ultimately led to TTG-like melts. Less hydrous basaltic melts also crystallised garnet/amphibole, but the lower compatible element content indicates that olivine was also a liquidus phase. Pronounced negative Eu-anomalies of the granitic melts, correlating with Na, Ca and Al, indicate plagioclase to be of major importance. In the context of our model, the post-Archaean disappearance of TTG and concomitant preponderance of granites (s.l.), therefore, is explained with secular decrease of aqueous fluid transport into subduction zones and/or efficiency of deep fluid release from slabs.
Resumo:
Diets with more than 30 g K/kg DM have previously been associated with hypomagnesaemia in grazing cattle, and to test whether such diets lead to mineral disorders in sheep, the absorption of Mg and other elements was investigated using experimental diets to which KC I had been added to provide 27, 29, 32 or 34 g K/kg DM. The apparent absorption, balance and apparent retention of Mg, and to a lesser extent Ca, were reduced for sheep offered the diets with 32 or 34 g K/kg DM. The absorption and retention of K, Na, P, Zn, Pb and Cd was not affected by treatment. The blood intracellular Ca concentration was reduced by the diets with 29, 32 or 34 g K/kg DM, compared to the diet with 27 g K/kg DM, but the concentration of other elements was unaffected. Blood plasma Ca concentration was increased at the highest level of K inclusion, providing evidence of mild hyperkalaemia and the involvement of Ca homeostatic mechanisms. It is concluded that Mg absorption by sheep will be impaired if the diet contains more than 30 g K/kg DM, equivalent to an intake of approximately 13 g K/d, but that a high K diet may be beneficial before parturition to accustom the sheep to Ca mobilization before lactation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fig. 1. Classical hydraulic jump with partially developed inflow conditions. F1 = 13.6, V1 = 4.7 m/s, B = 0.25 m, h = 0.020 mm, d1 = 0.012 mm, Q = 14 L/s. Photo courtesy of Dr. Hubert Chanson. published in: Geomorphology Volume 82, Issues 1-2, 6 December 2006, Pages 146-159 The Hydrology and Geomorphology of Bedrock Rivers doi:10.1016/j.geomorph.2005.09.024 Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel Brett L. Vallé and Gregory B. Pasternacka
Methuselah-span precautionary decisions: an example from the YUCCA mountain nuclear waste repository
Resumo:
The sulphide mineralisation at Avoca and Parys Mountain is intimately related to volcanism and is of volcanogenic sedimentary type. The associated volcanics are predominantly pyroclastics of rhyodacitic composition and of Upper Ordovician age. They were erupted from discrete small volcanic centres, products of single local volcanic events, whose spatial distribution was related to fractures in the sialic basement of the paratectonic Caledonides of the British Isles. These fractures resulted in linear controls on volcanic, plutonic and tectonic features; they are the result of predominantly strikeslip stresses generated in this part of the European plate during closure of the Iapetus ocean. The mineralisation, predominantly pyritic, consists of a siliceous footwall zone containing bedded and cross-cutting sulphides and an overlying non-siliceous zone of bedded sulphides which may show vertical zoning of metal ratios. The sulphides are associated with chert and iron formation and have been affected by slumping. Mineralisation developed near the vents during intense fumarolic activity accompanying strong volcanism; at Parys Mountain, fumarolic activity commenced prior to, and continued after, the rnain volcanic event. Comparison with similar deposits in Newfoundland and at Bathurst, in the Canadian Appalachians, shows that mineralisation can be associated with any discrete pulse of acid magmatism in shallow subaqueous conditions. Local features of the sulphides and associated sediments are similar, although in more distal deposits (with respect to a volcanic centre) footwall alteration and mineralisation are less well developed. The nature of the basement and the presence or absence of earlier volcanics are not critical, although establishment of a local tensional regime at the time of ore formation may be important. The volcanics hosting mineralisation are rhyodacitic pyroclastics, generally related to a small centre and representing a single episode of volcanism.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The Lower Palaeozoic succession at Parys Mountain overlies a Precambrian basement (the Iona Series). This succession consists of Ordovician slates, overlain by, and in part interbedded with, Ordovician dacitic and rhyolitic volcanics, which in turn are unconformably overlain by Silurian slates. Both basement and Palaeozoic rocks have been deformed during Caledonian and Variscan orogenies. The resultant structure of Parys Mountain is interpreted as an east-north-easterly trending, single syncline overturned to the north. Many primary extrusive characters are retained by the volcanic rocks, despite the high degree of deformation. The lithologies and textures allow subdivision and interpretation of these rocks as dacite, lithic tuff, siliceous sinter, rhyolitic tuff, rhyolitic ignimbrite, rhyolitic tuff-lava, and rhyolitic lava. The results of 61 bulk chemical analyses are interpreted to show that the volcanism was of the orogenic calc-alkaline type from a continental margin/island arc environment. The magmas probably result from either partial melting of the crustal part of the oceanic lithosphere on a Benioff zone, or partial melting of the mantle, above a Benioff zone, under high load pressures and high water pressures. The mineral deposits are largely confined within the volcanic succession though some occur in the Ordovician and Silurian slates near to their contacts with the volcanics. The majority of the deposits form conformable lenses and tabular bodies, with subordinate deposits as veins and stockworks. The ore mineral assemblages are of chalcopyrite, galena, sphalerite, and pyrite. The general paragenetic sequence (73 sections) is pyrite--chalcopyrite--galena-sphalerite. The main mineralization episode is interpreted to be syngenetic, genetically related to the volcanism. The veins and stockworks probably result from Caledonian and Variscan remobilization of the primary mineralization. Trace element analyses (Cu, Zn, Pb, Ni, Co, Cd, Cr, Hg, Ba, Sr), on 350 specimens, detected anomalous concentrations of these elements around the mineralized zones, though some occur where no mineralization was found. The analyses also indicate a close relationship between the mineralization and the volcanic horizons, especially the siliceous sinter.
Resumo:
Partially supported by Sapientia Foundation.
Deformation Lemma, Ljusternik-Schnirellmann Theory and Mountain Pass Theorem on C1-Finsler Manifolds
Resumo:
∗Partially supported by Grant MM409/94 Of the Ministy of Science and Education, Bulgaria. ∗∗Partially supported by Grant MM442/94 of the Ministy of Science and Education, Bulgaria.
Resumo:
Pinewood Estate is a significant resource in the history of the theory and practice of landscape architecture. The purpose of this thesis is to provide a landscape plan to restore the Pinewood Estate to its historic integrity in order to retain and reflect its past. In order to determine the criteria used to establish how and to what period the estate should be restored to, the Secretary of the Interior's Guidelines for the Treatment of Cultural Landscapes was followed. This process involved documenting the existing conditions of the estate. Site inventory and analysis and onsite interviews were conducted. Natural and cultural resources were evaluated. As a case study, McKee Botanical Garden was analyzed and evaluated. The comparison of this case study served as a guideline to determine the best practice for the historical preservation of the estate. Despite the changes in the landscape at Pinewood Estate over the past seventy years, the garden today still retains William Lyman Phillips design criteria. For the garden to continue to keep its historic fabric, rehabilitation was selected to allow for improvements that make possible efficient contemporary use of the estate.