904 resultados para MICROARRAY
Resumo:
While protein microarray technology has been successful in demonstrating its usefulness for large scale high-throughput proteome profiling, performance of antibody/antigen microarrays has been only moderately productive. Immobilization of either the capture antibodies or the protein samples on solid supports has severe drawbacks. Denaturation of the immobilized proteins as well as inconsistent orientation of antibodies/ligands on the arrays can lead to erroneous results. This has prompted a number of studies to address these challenges by immobilizing proteins on biocompatible surfaces, which has met with limited success. Our strategy relates to a multiplexed, sensitive and high-throughput method for the screening quantification of intracellular signalling proteins from a complex mixture of proteins. Each signalling protein to be monitored has its capture moiety linked to a specific oligo âtag’. The array involves the oligonucleotide hybridization-directed localization and identification of different signalling proteins simultaneously, in a rapid and easy manner. Antibodies have been used as the capture moieties for specific identification of each signaling protein. The method involves covalently partnering each antibody/protein molecule with a unique DNA or DNA derivatives oligonucleotide tag that directs the antibody to a unique site on the microarray due to specific hybridization with a complementary tag-probe on the array. Particular surface modifications and optimal conditions allowed high signal to noise ratio which is essential to the success of this approach.
Resumo:
Emergent molecular measurement methods, such as DNA microarray, qRTPCR, and many others, offer tremendous promise for the personalized treatment of cancer. These technologies measure the amount of specific proteins, RNA, DNA or other molecular targets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumor specimens are heterogeneous; an individual specimen typically contains unknown amounts of multiple tissues types. Thus, the measured molecular concentrations result from an unknown mixture of tissue types, and must be normalized to account for the composition of the mixture. For example, a breast tumor biopsy may contain normal, dysplastic and cancerous epithelial cells, as well as stromal components (fatty and connective tissue) and blood and lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic and cancerous epithelial cells. The remaining tissue components serve to “contaminate” the signal of interest. The proportion of each of the tissue components changes as a function of patient characteristics (e.g., age), and varies spatially across the tumor region. Because each of the tissue components produces a different molecular signature, and the amount of each tissue type is specimen dependent, we must estimate the tissue composition of the specimen, and adjust the molecular signal for this composition. Using the idea of a chemical mass balance, we consider the total measured concentrations to be a weighted sum of the individual tissue signatures, where weights are determined by the relative amounts of the different tissue types. We develop a compositional source apportionment model to estimate the relative amounts of tissue components in a tumor specimen. We then use these estimates to infer the tissuespecific concentrations of key molecular targets for sub-typing individual tumors. We anticipate these specific measurements will greatly improve our ability to discriminate between different classes of tumors, and allow more precise matching of each patient to the appropriate treatment
Resumo:
La captación de glucosa y su conversión en lactato juega un papel fundamental en el metabolismo tumoral, independientemente de la concentración de oxígeno presente en el tejido (efecto Warburg). Sin embrago, dicha captación varía de un tipo tumoral a otro, y dentro del mismo tumor, situación que podría depender de las características microambientales tumorales (fluctuaciones de oxígeno, presencia de otros tipos celulares) y de factores estresores asociados a los tratamientos. Se estudió el efecto de la hipoxia-reoxigenación (HR) y las radiaciones ionizantes (RI) sobre la captación de glucosa, en cultivos de líneas tumorales MCF-7 y HT-29, cultivadas de forma aislada o en cocultivo con la línea celular EAhy296. Se encontró que la captación de glucosa en HR es diferente para lo descrito en condiciones de hipoxia permanente y que es modificada en el cocultivo. Se identificaron poblaciones celulares dentro de la misma línea celular, de alta y baja captación de glucosa, lo que implicaría una simbiosis metabólica de la célula como respuesta adaptativa a las condiciones tumorales. Se evaluó la expresión de NRF2 y la translocación nuclear de NRF2 y HIF1a, como vías de respuesta a estrés celular e hipoxia. La translocación nuclear de las proteínas evaluadas explicaría el comportamiento metabólico de las células tumorales de seno, pero no de colon, por lo cual deben existir otras vías metabólicas implicadas. Las diferencias en el comportamiento de las células tumorales en HR en relación con hipoxia permitirá realizar planeaciones dosimétricas más dinámicas, que reevalúen las condiciones de oxigenación tumoral constantemente.
Resumo:
Introducción: la hibridación genómica comparativa en una técnica que permite la exploración de las anormalidades cromosómicas. Su utilidad en la aproximación de los pacientes con retraso global del desarrollo o fenotipo dismórfico, sin embargo, no ha sido explorada mediante una revisión sistemática de la literatura. Metodología: realizó una revisión sistemática de la literatura. Se incluyeron estudios controlados, cuasi-experimentales, de cohortes, de casos y controles, transversales y descriptivos publicados en idiomas inglés y español entre los años 2000 y 2013. Se realizó un análisis de la evidencia con un enfoque cualitativo y cuantitativo. Se realizó un análisis del riesgo de sesgo de los estudios incluidos. Resultados: se incluyeron 4 estudios que cumplieron con los criterios de inclusión. La prevalencia de alteraciones cromosómicas en los niños con retraso global del desarrollo fue de entre el 6 y 13%. El uso de la técnica permitió identificar alteraciones que no fueron detectadas mediante el cariotipo. Conclusiones: la hibridación genómica comparativa es una técnica útil en la aproximación diagnóstica de los niños con retraso global del desarrollo y del fenotipo dismórfico y permite una mayor detección de alteraciones comparada con el cariotipo.
Resumo:
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Resumo:
DNA microarrays can be used to measure environmental stress responses. If they are to be predictive of environmental impact, we need to determine if altered gene expression translates into negative impacts on individuals and populations. A large cDNA microarray (14000 spots) was created to measure molecular stress responses to cadmium in Daphnia magna,the most widely used aquatic indicator species, and relate responses to population growth rate (pgr). We used the array to detect differences in the transcription of genes in juvenile D. magna (24 h old) after 24 h exposure to a control and three cadmium concentrations (6, 20, and 37 mu g Cd2+ L-1). Stress responses at the population level were estimated following a further 8 days exposure. Pgr was approximately linear negative with increasing cadmium concentration over this range. The microarray profile of gene expression in response to acute cadmium exposure begins to provide an overview of the molecular responses of D. magna, especially in relation to growth and development. Of the responding genes, 29% were involved with metabolism including carbohydrate, fat and peptide metabolism, and energy production, 31% were involved with transcription/translation, while 40% of responding genes were associated with cellular processes like growth and moulting, ion transport, and general stress responses (which included oxidative stress). Our production and application of a large Daphnia magna microarray has shown that measured gene responses can be logically linked to the impact of a toxicant such as cadmium on somatic growth and development, and consequently pgr.
Resumo:
Rhizobium leguminosarum bv. viciae 3841 contains six putative quaternary ammonium transporters (Qat), of the ABC family. Qat6 was strongly induced by hyperosmosis although the solute transported was not identified. All six systems were induced by the quaternary amines choline and glycine betaine. It was confirmed by microarray analysis of the genome that pRL100079-83 (qat6) is the most strongly upregulated transport system under osmotic stress, although other transporters and 104 genes are more than threefold upregulated. A range of quaternary ammonium compounds were tested but all failed to improve growth of strain 3841 under hyperosmotic stress. One Qat system (gbcXWV) was induced 20-fold by glycine betaine and choline and a Tn5::gbcW mutant was severely impaired for both transport and growth on these compounds, demonstrating that it is the principal system for their use as carbon and nitrogen sources. It transports glycine betaine and choline with a high affinity (apparent K-m, 168 and 294 nM, respectively).
Resumo:
Background: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and invertebrates, and they suggest that ibuprofen has a targeted impact on reproduction at the molecular, organismal, and population level in daphnids. Microarray expression and temporal real-time quantitative PCR profiles of key genes suggest early ibuprofen interruption of crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone metabolism and oogenesis. Conclusion: Combining molecular and organismal stress responses provides a guide to possible chronic consequences of environmental stress for population health. This could improve current environmental risk assessment by providing an early indication of the need for higher tier testing. Our study demonstrates the advantages of a systems approach to stress ecology, in which Daphnia will probably play a major role.
Resumo:
Since the alkyl esters of p-hydroxybenzoic acid (parabens) can be measured intact in the human breast and possess oestrogenic properties, it has been suggested that they could contribute to an aberrant burden of oestrogen signalling in the human breast and so play a role in the rising incidence of breast cancer. However, although parabens have been shown to regulate a few single genes (reporter genes, pS2, progesterone receptor) in a manner similar to that of 17 beta-oestradiol, the question remains as to the full extent of the similarity in the overall gene profile induced in response to parabens compared with 17 beta-oestradiol. The GE-Amersham CodeLink 20 K human expression microarray system was used to profile the expression of 19881 genes in MCF7 human breast cancer cells following a 7-day exposure to 5 x 10(-4) m methylparaben, 10(-5) m n-butylparaben and 10(-8) m 17 beta-oestradiol. At these concentrations, the parabens gave growth responses in MCF7 cells of similar magnitude to 17 beta-oestradiol. The study identified genes which are upregulated or downregulated to a similar extent by methylparaben, n-butylparaben and 17 beta-oestradiol. However, the majority of genes were not regulated in the same way by all three treatments. Some genes responded differently to parabens from 17 beta-oestradiol, and furthermore, differences in expression of some genes could be detected even between the two individual parabens. Therefore, although parabens possess oestrogenic properties, their mimicry in terms of global gene expression patterns is not perfect and differences in gene expression profiles could result in consequences to the cells that are not identical to those following exposure to 17 beta-oestradiol. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND: Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-kappaB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response. These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. This process is tightly regulated and loss of control is associated with conditions such as septic shock, inflammatory diseases and cancer. To study this response, it is important to have in vitro model systems that reflect the behaviour of cells in vivo. In addition, it is necessary to understand the natural differences that can occur between individuals. In this report, we have investigated and compared the LPS response in macrophage derived cell lines and peripheral blood mononuclear cell (PBMC) derived macrophages. RESULTS: Gene expression profiles were determined following LPS treatment of THP-1 cells for 1 and 4 hours. LPS significantly induced or repressed 72 out of 465 genes selected as being known or putative NF-kappaB target genes, which exhibited 4 temporal patterns of expression. Results for 34 of these genes, including several genes not previously identified as LPS target genes, were validated using real time PCR. A high correlation between microarray and real time PCR data was found. Significantly, the LPS induced expression profile of THP-1 cells, as determined using real time PCR, was found to be very similar to that of human PBMC derived macrophages. Interestingly, some differences were observed in the LPS response between the two donor PBMC macrophage populations. Surprisingly, we found that the LPS response in U937 cells was dramatically different to both THP-1 and PBMC derived macrophages. CONCLUSION: This study revealed a dynamic and diverse transcriptional response to LPS in macrophages, involving both the induction and repression of gene expression in a time dependent manner. Moreover, we demonstrated that the LPS induced transcriptional response in the THP-1 cell line is very similar to primary PBMC derived macrophages. Therefore, THP-1 cells represent a good model system for studying the mechanisms of LPS and NF-kappaB dependent gene expression.
Resumo:
Background: Transcriptomic techniques are now being applied in ecotoxicology and toxicology to measure the impact of stressors and develop understanding of mechanisms of toxicity. Microarray technology in particular offers the potential to measure thousands of gene responses simultaneously. However, it is important that microarrays responses should be validated, at least initially, using real-time quantitative polymerase chain reaction (QPCR). The accurate measurement of target gene expression requires normalisation to an invariant internal control e. g., total RNA or reference genes. Reference genes are preferable, as they control for variation inherent in the cDNA synthesis and PCR. However, reference gene expression can vary between tissues and experimental conditions, which makes it crucial to validate them prior to application. Results: We evaluated 10 candidate reference genes for QPCR in Daphnia magna following a 24 h exposure to the non-steroidal anti-inflammatory drug (NSAID) ibuprofen (IB) at 0, 20, 40 and 80 mg IB l(-1). Six of the 10 candidates appeared suitable for use as reference genes. As a robust approach, we used a combination normalisation factor (NF), calculated using the geNorm application, based on the geometric mean of three selected reference genes: glyceraldehyde-3-phosphate dehydrogenase, ubiquitin conjugating enzyme and actin. The effects of normalisation are illustrated using as target gene leukotriene B4 12-hydroxydehydrogenase (Ltb4dh), which was upregulated following 24 h exposure to 63-81 mg IB l(-1). Conclusions: As anticipated, use of the NF clarified the response of Ltb4dh in daphnids exposed to sublethal levels of ibuprofen. Our findings emphasise the importance in toxicogenomics of finding and applying invariant internal QPCR control(s) relevant to the study conditions.
Resumo:
Establishing the mechanisms by which microbes interact with their environment, including eukaryotic hosts, is a major challenge that is essential for the economic utilisation of microbes and their products. Techniques for determining global gene expression profiles of microbes, such as microarray analyses, are often hampered by methodological restraints, particularly the recovery of bacterial transcripts (RNA) from complex mixtures and rapid degradation of RNA. A pioneering technology that avoids this problem is In Vivo Expression Technology (IVET). IVET is a 'promoter-trapping' methodology that can be used to capture nearly all bacterial promoters (genes) upregulated during a microbe-environment interaction. IVET is especially useful because there is virtually no limit to the type of environment used (examples to date include soil, oomycete, a host plant or animal) to select for active microbial promoters. Furthermore, IVET provides a powerful method to identify genes that are often overlooked during genomic annotation, and has proven to be a flexible technology that can provide even more information than identification of gene expression profiles. A derivative of IVET, termed resolvase-IVET (RIVET), can be used to provide spatio-temporal information about environment-specific gene expression. More recently, niche-specific genes captured during an IVET screen have been exploited to identify the regulatory mechanisms controlling their expression. Overall, IVET and its various spin-offs have proven to be a valuable and robust set of tools for analysing microbial gene expression in complex environments and providing new targets for biotechnological development.
Resumo:
Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.
Resumo:
Daphnia magna is a key invertebrate in the freshwater environment and is used widely as a model in ecotoxicological measurements and risk assessment. Understanding the genomic responses of D. magna to chemical challenges will be of value to regulatory authorities worldwide. Here we exposed D. magna to the insecticide methomyl and the herbicide propanil to compare phenotypic effects with changes in mRNA expression levels. Both pesticides are found in drainage ditches and surface water bodies standing adjacent to crops. Methomyl, a carbamate insecticide widely used in agriculture, inhibits acetylcholinesterase, a key enzyme in nerve transmission. Propanil, an acetanilide herbicide, is used to control grass and broad-leaf weeds. The phenotypic effects of single doses of each chemical were evaluated using a standard immobilisation assay. Immobilisation was linked to global mRNA expression levels using the previously estimated 48h-EC(1)s, followed by hybridization to a cDNA microarray with more than 13,000 redundant cDNA clones representing >5000 unique genes. Following exposure to methomyl and propanil, differential expression was found for 624 and 551 cDNAs, respectively (one-way ANOVA with Bonferroni correction, P=0.05, more than 2-fold change) and up-regulation was prevalent for both test chemicals. Both pesticides promoted transcriptional changes in energy metabolism (e.g., mitochondrial proteins, ATP synthesis-related proteins), moulting (e.g., chitin-binding proteins, cuticular proteins) and protein biosynthesis (e.g., ribosomal proteins, transcription factors). Methomyl induced the transcription of genes involved in specific processes such as ion homeostasis and xenobiotic metabolism. Propanil highly promoted haemoglobin synthesis and up-regulated genes specifically related to defence mechanisms (e.g., innate immunity response systems) and neuronal pathways. Pesticide-specific toxic responses were found but there is little evidence for transcriptional responses purely restricted to genes associated with the pesticide target site or mechanism of toxicity.
Resumo:
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.