989 resultados para MGO
Resumo:
George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.
Resumo:
Lower Miocene basaltic glass spherules from DSDP Site 32 pelagic sediments in the eastern Pacific are compositionally diverse, and new analyses and interpretations have been added to those of earlier workers. The spherules are of titanian ferrobasalt which is compositionally similar to highly evolved abyssal basalts and to some oceanic island eruptives, and they were most likely shaped during intense lava fountaining during a number of separate eruptions. These eruptions tapped distinct but related magma batches in terms, for example, of distinctively high TiO2 and FeO* contents. Their age overlaps that of some of the eruptions of the Columbia River Plateau Basalts, but they are compositionally distinct from most of the latter basalts. Although about 15 m.y. old, they show little alteration. The low chlorine and sulfur contents compared to those of abyssal ferrobasalts are consistent with degassing prior to quenching during subaerial eruptions, and rule out production of the spherules by submarine fountaining. Lava fountaining alone is insufficient to account for the distance of about 100 km from even the closest possible seamount source. Instead, large phreatomagmatic eruption columns reaching at least 15 km and including lava fountaining immediately after the initial explosion are required. Alternatively, and deemed less likely, is their deposition by turbidites derived from Pioneer Seamount.
Resumo:
Results of comprehensive geological, geophysical and geochemical studies carried out in the Cape Verde Fracture Zone (Central Atlantic) during Cruise 9 of R/V ''Antares'' (1990-1991) are published in the book. Detailed characterization of various bedrock complexes (ultrabasites, gabbroids, dolerites, basalts, metamorphic rocks) is given. Geological conditions of newly found hydrothermal mineralization in the area are described. Problems of ore melts are under consideration. New data on hydrochemical anomalies and heat flow are given. The book contains original materials on sedimentary formations of the area.
Resumo:
Aqueous dihydrogen (H2,aq) is produced in copious amounts when seawater interacts with peridotite and H2O oxidizes ferrous iron in olivine to ferric iron in secondary magnetite and serpentine. Poorly understood in this process is the partitioning of iron and its oxidation state in serpentine, although both impose an important control on dihydrogen production. We present results of detailed petrographic, mineral chemical, magnetic and Mößbauer analyses of partially to fully serpentinized peridotites from the Ocean Drilling Program (ODP) Leg 209, Mid-Atlantic Ridge (MAR) 15°N area. These results are used to constrain the fate of iron during serpentinization and are compared with phase equilibria considerations and peridotite-seawater reaction path models. In samples from Hole 1274A, mesh-rims reveal a distinct in-to-out zoning from brucite at the interface with primary olivine, followed by a zone of serpentine + brucite ± magnetite and finally serpentine + magnetite in the outermost mesh-rim. The compositions of coexisting serpentine (Mg# 95) and brucite (Mg# 80) vary little throughout the core. About 30-50% of the iron in serpentine/brucite mesh-rims is trivalent, irrespective of subbasement depth and protolith (harzburgite versus dunite). Model calculations suggest that both partitioning and oxidation state of iron are very sensitive to temperature and water-to-rock ratio during serpentinization. At temperatures above 330 °C the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen depends on the availability of an external silica source. At these temperatures the extent of olivine serpentinization is insufficient to produce much hydrogen, hence conditions are not reducing enough to form awaruite. At T < 330 °C, hydrogen generation is facilitated by the formation of brucite, as dissolution of olivine to form serpentine, magnetite and brucite requires no addition of silica. The model calculations suggest that the iron distribution observed in serpentine and brucite is consistent with formation temperatures ranging from <150 to 250 °C and bulk water-to-rock ratios between 0.1 and 5. These conditions coincide with peak hydrogen fugacities during serpentinization and are conducive to awaruite formation during main stage serpentinization. The development of the common brucite rims around olivine is either due to an arrested reaction olivine -> brucite -> serpentine + brucite, or reflects metastable olivine-brucite equilibria developing in the strong gradient in silica activity between orthopyroxene (talc-serpentine) and olivine (serpentine-brucite).
Resumo:
The Yamato Basin basement in the Sea of Japan was drilled below the sediment pile during Legs 127 and 128. Two superposed volcanic complexes are distinguished. The upper complex consists of continental tholeiite sills dated around 20-18 Ma and attributed to the rifting stage of the backarc basin. The lower complex consists of backarc basin basalts probably intruded below the upper complex during the spreading stage. Trace-element compositions and Sr and Nd isotopic signatures may be explained by mixing of at least two end members with a very small addition of crustal and subducted sediment component. Thus, upwelling of mantle diapir occurred during the rifting stage. Contribution of the depleted mantle increased in the spreading stage. The Neogene magmatic history of the Japan Sea is reviewed in the light of the ODP new data.
Resumo:
At Site 585 of Deep Sea Drilling Project Leg 89 more than 500 m of volcaniclastic to argillaceous middle-Late Cretaceous sediments were recovered. Analyses by X-ray diffraction (bulk sediment and clay fraction), transmission electron microscopy, molecular and atomic absorption, and electron microprobe were done on Site 585 samples. We identify four successive stages and interpret them as the expression of environments evolving under successive influences: Stage 1, late Aptian to early Albian - subaerial and proximal volcanism, chiefly expressed by the presence of augite, analcite, olivine, celadonite, small and well-shaped transparent trioctahedral saponite, Al hydroxides, Na, Fe, Mg, and various trace elements (Mn, Ni, Cr, Co, Pb, V, Zn, Ti). Stage 2, early to middle Albian - submarine and less proximal volcanic influence, characterized by dioctahedral and hairy Mg-beidellites, a paucity of analcite and pyroxenes, the presence of Mg and K, and local alteration of Mg-smectites to Mg-chlorites. Stage 3, middle Albian to middle Campanian - early marine diagenesis, marked by the development of recrystallization from fleecy smectites to lathed ones (all of alkaline Si-rich Fe-beidellite types), by the development of opal CT and clinoptilolite, and by proximal to distal volcanic influences (Na parallel to Ti, K). Local events consist of the supply of reworked palygorskite during the Albian-Cenomanian, and the recurrence of proximal volcanic activity during the early Campanian. Stage 4, late Campanian to Maestrichtian - development of terrigenous supply resulting from the submersion of topographic barriers; this terrigenous supply is associated with minor diagenetic effects and is marked by a clay diversification (beidellite, illite, kaolinite, palygorskite), the rareness of clay recrystallizations, and the disappearance of volcanic markers.
Resumo:
Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic history, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallization at HT conditions; ages scatter from 263-294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.
Resumo:
A geochemical, mineralogical, and isotopic database comprising 75 analyses of Ocean Drilling Program (ODP) Leg 193 samples has been prepared, representing the variable dacitic volcanic facies and alteration types observed in drill core from the subsurface of the PACMANUS hydrothermal system (Table T1. The data set comprises major elements, trace and rare earth elements (REE), various volatiles (S, F, Cl, S, SO4, CO2, and H2O), and analyses of 18O and 86Sr/87Sr for bulk rock and mineral separates (anhydrite). Furthermore, normative mineral proportions have been calculated based on the results of X-ray diffraction (XRD) analysis (Table T2) using the SOLVER function of the Microsoft Excel program. Several of the samples analyzed consist of mesoscopically distinctive domains, and separate powders were generated to investigate these hand specimen-scale heterogeneities. Images of all the samples are collated in Figure F1, illustrating the location of each powder analyzed and documenting which measurements were performed.
Resumo:
Several distinct, thin (2-7 cm), volcanic sand layers ("ashes") were recovered in the upper portions of Holes 842A and 842B. These holes were drilled 320 km west of the island of Hawaii on the outer side of the arch that surrounds the southern end of the Hawaiian chain. These layers are Pliocene to Pleistocene in age, graded, and contain fresh glass and mineral fragments (mainly olivine, plagioclase, and clinopyroxene) and tests of Pleistocene to Eocene radiolarians. The glass fragments are weakly vesicular and blocky to platy in shape. The glass and olivine fragments from individual layers have large ranges in composition (i.e, larger than expected for a single eruption). These features are inconsistent with an explosive eruption origin for the sands. The only other viable mechanism for transporting these sands hundreds of kilometers from their probable source, the Hawaiian Islands, is turbidity currents. These currents were probably related to several of the giant debris slides that were identified from Gloria sidescan images around the islands. These currents would have run over the ~500-m-high Hawaiian Arch on their way to Site 842. This indicates that the turbidity currents were at least 325 m thick. Paleomagnetic and biostratigraphic data allow the ages of the sands to be constrained and, thus, related to particular Hawaiian debris flows. These correlations were checked by comparing the compositions of the glasses from the sands with those of glasses and rocks from islands with debris flows directed toward Site 842. Good correlations were found for the 110-ka slide from Mauna Loa and the ~1.4-Ma slide from Lanai. The correlation with Kauai is poor, probably because the data base for that volcano is small. The low to moderate sulfur content of the sand glasses indicates that they were derived from moderately to strongly degassed lavas (shallow marine or subaerially erupted), which correlates well with the location of the landslide scars on the flanks of the Hawaiian volcanoes. The glass sands may have been formed by brecciation during the landslide events or spallation and granulation as lava erupted into shallow water.
Resumo:
The monograph is devoted to the main results of research on the Trans Indian Ocean Geotraverse from the Maskarene Basin to the north-western margin of Australia. These results were obtained by Russian specialists and together with Indian specialists during 15 years of cooperation in investigation of geological structure and mineral resources of the Indian Ocean. The monograph includes materials on information support of marine geological and geophysical studies, composition and structure of information resources on the Indian Ocean, bathymetry and geomorphology, structure and geological nature of the magnetic field, gravity field, plate tectonics, crustal structure and sedimentary cover, seismic stratigraphy, perspectives for detecting oil and gas, solid minerals, sediment composition, composition and properties of clay minerals, stratigraphy and sediment age, chemical composition of sediments, composition of and prospects for solid minerals.
Resumo:
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.
Resumo:
The relatively fresh basement basaltic rocks cored at Sites 794 and 797 during ODP Legs 127 and 128 show compositional variations suggesting the following: (1) the aphyric rocks might be differentiated from compositional equivalents of the aphyric sample with the lowest FeO*/MgO (Sample 127-797C-12R-4, 35-37 cm); and (2) the plagioclase-phyric rocks (i.e., another constituent of the basement basaltic rocks from the sites) may be derivatives from the same parents; in this case, however, crystallized plagioclase was not effectively removed. Melting experiments were conducted for Sample 127-797C-12R-4, 35-37 cm, and the differentiation processes for the basement basaltic rocks were assessed. The high-pressure melting-phase relation can not account for the compositional variation of the aphyric rocks, suggesting that the variation was developed at relatively low pressure where olivine and plagioclase fractionation was followed by Ca-rich clinopyroxene fractionation. The density of Sample 127-797C-12R-4,35-37 cm, is comparable to that of plagioclase at some depth, but at still relatively low pressure, making it possible that the liquidus plagioclase was retained in the successive liquids to produce the plagioclase-phyric rocks. According to backtrack calculation assuming the olivine maximum fractionation, Sample 127-797C-12R-4, 35-37 cm, was differentiated from primary picritic high-Al basalt magma. The estimated primary magma composition was experimentally proved to coexist with harzburgite mantle at about 14 kbar, suggesting relatively shallow production (approximately 40-50 km below surface) of the rifting-related primary magma.
Resumo:
Air-fall volcanic ash and pumice were recovered from 22 intervals in upper Miocene-Pleistocene nannofossil oozes cored in Hole 810C on Shatsky Rise, northwest Pacific. Shatsky Rise is near the eastern limit of ash falls produced by explosive volcanism in arc systems in northern Japan and the Kuriles, more than 1600 km away. Electron probe analyses establish that the ash beds and pumice pebbles are andesitic to rhyolitic in composition, and belong to both tholeiitic and high-alumina lineages similar to tephra from Japanese volcanoes. High-speed winds in the polar-front and subtropical jets are evidently what propelled the ash for such a distance. The pumice arrived by flotation, driven from the same directions by winds, waves, and currents. It is not ice-rafted debris from the north. One thick pumice bed probably was deposited when a large pumice mat passed over Shatsky Rise. Far more abundant ash occurs in sediments cored at DSDP Sites 578 through 580, about 500 km west of Shatsky Rise. Most of the ash and pumice at Shatsky Rise can be correlated with specific ash beds at 1, 2, or all 3 of these sites by interpolating to precisely determined magnetic reversal sequences in the cores. Most of the correlations are to thick ash layers (5.7 +/- 3.0 cm) at one or more sites. These must represent extremely large eruptions that spread ash over very wide areas. Whereas several of the thicker correlative ashes fell from elongate east-trending plumes directed from central Japan, the majority of them - dating from about 2 Ma - came from the North Honshu and Kurile arc systems to the northwest. This direction probably was in response to both long-term and seasonal fluctuations in the location and velocity of the polar-front jet, and to more vigorous winter storm fronts originating over glaciated Siberia.
Resumo:
We report S concentrations and relative proportions of (SO4)2- and S2- in OL- and CPX-hosted glass inclusions and in host glassy lapilli from Miocene basaltic hyaloclastites drilled north and south of Gran Canaria during ODP Leg 157. Compositions of glass inclusions and lapilli resemble those of subaerial Miocene shield basalts on Gran Canaria and comprise mafic to more evolved tholeiitic to alkali basalt and basanite (10.3-3.7 wt.% MgO, 44.5-56.9 wt.% SiO2). Glass inclusions fall into three groups based on their S concentrations: a high-sulfur group (1050 to 5810 ppm S), an intermediate-sulfur group (510 to 1740 ppm S), and a low-sulfur group (<500 ppm S). The most S-rich inclusions have the highest and nearly constant proportion of sulfur dissolved as sulfate determined by electron microprobe measurements of SKa peak shift. Their average S6+/S_total value is 0.75+/-0.09, unusually high for ocean island basalt magmas. The low-sulfur group inclusions have low S6+/S_total ratios (0.08+/-0.05), whereas intermediate sulfur group inclusions show a wide range of S6+/S_total (0.05-0.83). Glassy lapilli and their crystal-hosted glass inclusions with S concentrations of 50 to 1140 ppm S have very similar S6+/S_total ratios of 0.36+/-0.06 implying that sulfur degassing does not affect the proportion of (SO4)2- and S2- in the magma. The oxygen fugacities estimated from S6+/S_total ratios and from Fe3+/Fe2+ ratios in spinel inclusions range from NNO-1.1 to NNO+1.8. The origin of S-rich magmas is unclear. We discuss (1) partial melting of a mantle source at relatively oxidized fO2 conditions, and (2) magma contamination by seawater either directly or through magma interaction with seawater-altered Jurassic oceanic crust. The intermediate sulfur group inclusions represent undegassed or slightly degassed magmas similar to submarine OIB glasses, whereas the low-sulfur group inclusions are likely to have formed from magmas significantly degassed in near-surface reservoirs. Mixing of these degassed magmas with stored volatile-rich ones or volatile-rich magma replenishing the chamber filled by partially degassed magmas may produce hybrid melts with strongly varying S concentrations and S6+/S_total ratios.
Resumo:
During Ocean Drilling Program Leg 104 a 900-m-thick sequence of volcanic rocks was drilled at Hole 642E on the Vøring Plateau, Norwegian Sea. This sequence erupted in two series (upper and lower series) upon continental basement. The upper series corresponds to the seaward-dipping seismic reflectors and comprises a succession of about 122 flows of transitional oceanic tholeiite composition. They have been subdivided into several formations consisting of flows related to each other by crystal fractionation processes, magma mixing, or both. Major- and trace-element chemistry indicates affinities to Tertiary plateau lavas of northeast Greenland and to Holocene lavas from shallow transitional segments of the Mid-Atlantic Ridge, such as Reykjanes Ridge. The tholeiitic magmas have been derived from a slightly LREE-depleted mantle source. Two tholeiitic dikes that intruded the lower series derive from an extremely depleted mantle source. Interlayered volcaniclastic sediments are dominantly ferrobasaltic and more differentiated. They appear to come from a LREE-enriched mantle source, and may have been erupted in close vicinity of the Vøring Plateau during hydroclastic eruptions. The two tholeiitic dikes that intruded the lower series as well as some flows at the base of the upper series show evidence of assimilation of continental upper crustal material.