964 resultados para METHACRYLATE RESIN SEALER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the pullout strength of a glass fiber-reinforced composite post (glass FRC) cemented with three different adhesive systems and one resin cement. The null hypothesis was that pullout strengths yielded by the adhesive systems are similar. Materials and Methods: Thirty bovine teeth were selected. The size of the specimens was standardized at 16 mm by sectioning off the coronal portion and part of the root. The specimens were divided into three groups, according to the adhesive system, which were applied following the manufacturers' instructions: G1, ScotchBond Multi-Purpose Plus; G2, Single Bond; G3, Tyrian SPE/One-Step Plus. The glass FRCs (Reforpost) were etched with 37% H3PO4 for 1 min and silanized (Porcelain Primer). Thereafter, they were cemented with the dual resin cement En-Force. The specimens were stored for 24 h, attached to an adapted device, and submitted to the pullout test in a universal testing machine (1 mm/min). The data were submitted to the one-way ANOVA and Tukey's test (α = 0.05). Results: G1 (30.2 ± 5.8 Kgf) displayed the highest pullout strength (p < 0.001) when compared to G2 (18.6 ± 5.8 Kgf) and G3 (14.3 ± 5.8 Kgf), which were statistically similar. Analysis of the specimens revealed that all failures occurred between the adhesive system and the root dentin (pullout of the post cement), regardless of group. Conclusion: The multiple-bottle, total-etch adhesive system provided higher pullout strength of the glass FRC when compared to the single-bottle, total-etch, and single-step self-etching adhesive systems. The null hypothesis was rejected (p < 0.001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the effectiveness of microwave irradiation on the disinfection of simulated complete dentures. Materials and Methods: Eighty dentures were fabricated in a standardized procedure and subjected to ethylene oxide sterilization. The dentures were individually inoculated (10 7 cfu/mL) with tryptic soy broth (TSB) media containing one of the tested microorganisms (Candida albicans, Streptoccus aureus, Bacillus subtilis, and Pseudomonas aeruginosa). After 48 hours of incubation at 37°C, 40 dentures were individually immersed in 200 mL of water and submitted to microwave irradiation at 650 W for 6 minutes. Forty nonirradiated dentures were used as positive controls. Replicate aliquots (25 μL) of suspensions were plated at dilutions of 10 -3 to 10 -6 on plates of selective media appropriate for each organism. All plates were incubated at 37°C for 48 hours. TSB beakers with the microwaved dentures were incubated at 37°C for 7 more days. After incubation, the number of colony-forming units was counted and the data were statistically analyzed by Kruskal-Wallis test (α = .05). Results: No evidence of growth was observed at 48 hours for S aureus, B subtilis, and C albicans. Dentures contaminated with P aeruginosa showed small growth on 2 plates. After 7 days incubation at 37°C, no growth was visible in the TSB beakers of S aureus and C albicans. Turbidity was observed in 3 broth beakers, 2 from P aeruginosa and 1 from B subtilis. Conclusion: Microwave irradiation for 6 minutes at 650 W produced sterilization of complete dentures contaminated with S aureus and C albicans and disinfection of those contaminated with P aeruginosa and B subtilis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between the dielectric properties (dielectric constant, ε′, and loss factor, ε; activation energy, E a) and the ratio of epoxy resin (OG) to hardener of the epoxy resin thermosetting polymers was investigated. The amplitude of the ε″ peak decreases with increasing OG content until about 73 wt.% and slightly increases at higher OG content. The temperature of the position of the ε″ peak increases with the increasing of OG content, reaching maximum values for compositions in the range of 67 and 73 wt.%, and then it decreases sharply at higher OG content. The activation energy obtained from dielectric relaxation increased with increasing wt.% OG up to around 70 wt.%. Further increase in concentration of OG up to 83 wt.% reduced E a. The curves of tensile modulus and fracture toughness mechanical properties as a function of OG content presented a similar behavior. ©2006 Sociedade Brasileira de Química.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study assessed the shear bond strength of 4 hard chairside reline resins (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard) to a rapid polymerizing denture base resin (QC-20) processed using 2 polymerization cycles (A or B), before and after thermal cycling. Materials and Methods: Cylinders (3.5 mm x 5.0 mm) of the reline resins were bonded to cylinders of QC-20 polymerized using cycle A (boiling water-20 minutes) or B (boiling water; remove heat-20 minutes; boiling water-20 minutes). For each reline resin/polymerization cycle combination, 10 specimens (groups CAt e CBt) were thermally cycled (5 and 55°C; dwell time 30 seconds; 2,000 cycles); the other 10 were tested without thermal cycling (groups CAwt ad CBwt). Shear bond tests (0.5 mm/min) were performed on the specimens and the failure mode was assessed. Data were analyzed by 3-way ANOVA and Newman-Keuls post-hoc test (α=.05). Results: QC-20 resin demonstrated the lowest bond strengths among the reline materials (P<.05) and mainly failed cohesively. Overall, the bond strength of the hard chairside reline resins were similar (10.09±1.40 to 15.17±1.73 MPa) and most of the failures were adhesive/cohesive (mixed mode). However, Ufi Gel Hard bonded to QC-20 polymerized using cycle A and not thermally cycled showed the highest bond strength (P<.001). When Tokuso Rebase Fast and Duraliner II were bonded to QC-20 resin polymerized using cycle A, the bond strength was increased (P=.043) after thermal cycling. Conclusions: QC-20 displayed the lowest bond strength values in all groups. In general, the bond strengths of the hard chairside reline resins were comparable and not affected by polymerization cycle of QC-20 resin and thermal cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. Materials and Methods: The specimens were placed in 1 of 4 groups: group 1: dry conditions (immediate testing without aging); group 2: water storage at 37°C for 150 days; group 3: 150 days of water storage followed by thermocycling (× 12,000, 5°C to 55°C); group 4: water storage for 300 days; group 5: water storage for 300 days followed by thermocycling. Results: Group 1 showed a significantly higher microtensile bond strength value (26.2 ± 1 MPa) than the other aging regimens (6.5 ± 1, 6.2 ± 2, 4.5 ± 1, 4.3 ± 1 MPa for groups 2, 3, 4, and 5, respectively) (P < .01). Conclusion: Satisfactory results were seen in dry conditions, but water storage and thermocycling resulted in significantly weaker bonds between the resin cement and the zirconia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the influence of cavity design and photocuring method on the marginal seal of resin composite restorations. METHOD AND MATERIALS: Seventy-two bovine teeth were divided into 2 groups: group 1 received box-type cavity preparations, and group 2 received plate-type preparations. Each group was divided into 3 subgroups. After etching and bonding, Z250 resin composite (3M Espe) was applied in 2 equal increments and cured with 1 of 3 techniques: (1) conventional curing for 30 seconds at 650 mW/cm2; (2) 2-step photocuring, in which the first step was performed 14 mm from the restoration for 10 seconds at 180 mW/cm2 and the second step was performed in direct contact for 20 seconds at 650 mW/cm2; or (3) progressive curing using Jetlite 4000 (J. Morita) for 8 seconds at 125 mW/cm2 and then 22 seconds at 125 mW/cm2 up to 500 mW/cm2. The specimens were thermocycled for 500 cycles and then submitted to dye penetration with a 50% silver nitrate solution. Microleakage was assessed using a stereomicroscope. Data were analyzed using analysis of variance and Tukey test (5% level of significance). RESULTS: A statistically significant difference was found between groups when a double interaction between photocuring and cavity preparation was considered (P = .029). CONCLUSIONS: No one type of cavity preparation or photocuring method prevented micro-leakage. The plate-type preparation showed the worst dye penetration when conventional and progressive photocuring methods were used. The best results were found using the 2-step photocuring with the plate-type preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Since only a few data have been published concerning the effects of resinous dental materials on the pulp-dentin complex, the aim of this study was to evaluate the biocompatibility of resin-based materials applied as liners in deep cavities prepared in duman teeth. Methods: After preparing class V cavities, the following dental materials were applied on the axial walls: group 1, Vitrebond™ (VIT; 3M ESPE); group 2, Ultra-Blend® Plus™ (UBP; Untradent); and group 3, Clearfil™ SE Bond (CSEB; Kuraray). In group 4 (control), the hard-setting calcium hydroxide cement Dycal (CH; Caulk/Dentsply) was used. The teeth extracted at 7 days or between 30 and 85 days after the clinical procedures were processed for histological evaluation. Results: For all the experimental and control groups, most of specimens exhibited no pulpal response or slight inflammatory reaction associated with slight tissue disorganization at 7-day period. Moderate inflammatory pulpal response occurred only in one tooth (RDT = 262 μm) of group 3 in which transdentinal diffusion of resin components was observed. Conclusion: The resin-based dental cements VIT and UBP as well as the bonding agent CSEB presented acceptable biocompatibility when applied in deep cavities prepared in sound human teeth. © 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the fracture resistance of ceramic plates cemented to dentin as a function of the resin cement film thickness. Materials and Methods: Ceramic plates (1 and 2 mm thicknesses) were cemented to bovine dentin using resin composite cement. The film thicknesses used were approximately 100, 200, and 300 μm. Noncemented ceramic plates were used as control. Fracture loads (N) were obtained by compressing a steel indenter in the center of the ceramic plates. ANOVA and Tukey tests (α = 0.05) were used for each ceramic thickness to compare fracture loads among resin cement films used. Results: Mean fracture load (N) for 1-mm ceramic plates were: control - 26 (7); 100 μm - 743 (150); 200 μm - 865 (105); 300 μm - 982 (226). Test groups were significantly different from the control group; there was a statistical difference in fracture load between groups with 100 and 300 μm film thicknesses (p < 0.01). Mean fracture load for 2-mm ceramic plates were: control - 214 (111); 100 μm - 1096 (341); 200 μm - 1067 (226); 300 μm - 1351 (269). Tested groups were also significantly different from the control group (p < 0.01). No statistical difference was shown among different film thicknesses. Conclusions: Unluted specimens presented significantly lower fracture resistance than luted specimens. Higher cement film thickness resulted in increased fracture resistance for the 1-mm ceramic plates. Film thickness did not influence the fracture resistance of 2-mm porcelain plates. Copyright © 2007 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate in vivo the biocompatibility of Endométhasone, Pulp Canal Sealer EWT and AHPlus root canal sealers after implantation in rat connective tissue. Twenty-four Wistar-Furth rats were used. Polyethylene tubes were filled with the sealers and implanted into specific dorsal subdermal tissue sites of the rats. Implants were removed after 3, 7 and 30 days, fixed and processed for glycol methacrylate-embedding technique to be examined microscopically. On the 3rd day, there was a mild inflammatory reaction to Pulp Canal Sealer EWT implants, but a severe response to the other sealers with presence of acute inflammatory cells. On the 7th day, tissue organization was more evident with attenuation of the inflammatory reaction, especially for the AH-Plus implants. On the 30th day, connective tissue with few inflammatory cells was observed in contact with all sealer implants. In this time interval, the tissue in contact with Pulp Canal Sealer EWT implants was more organized, while the tissue close to Endométhasone and AH-Plus implants showed a mild persistent inflammatory reaction and had similar results to each other. In conclusion, the sealers had a similar pattern of irritation, which was more severe in the beginning and milder with time, in such a way that all sealers showed a persistent mild reaction. Pulp Canal Sealer EWT yielded better tissue organization than Endométhasone and AH-Plus, which, in turn, showed similar results to each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study evaluated the efficiency of repolishing, sealing with surface sealant, and the joining of both in decreasing the surface roughness of resin-based composites after a toothbrushing process. METHOD AND MATERIALS: Ten specimens of each composite (Alert, Z100, Definite, and Prodigy Condensable), measuring 2 mm in thickness and 4 mm in diameter, were made and submitted to finishing and polishing processes on both sides of the specimens using the Sof-Lex system. The specimens were then subjected to toothbrushing (30,000 cycles), and surface roughness (Ra) was analyzed with a Surfcorder SE 1700 profilometer. The upper surface of each composite was etched with 37% phosphoric acid, and the surface-penetrating sealant Protect-it was applied on 1 surface. The roughness of these surfaces was again measured. On the other side, the surface of the specimen was repolished, and the efficiency of this procedure was measured using the profilometer. The surface roughness resulting from the joining of the 2 methods was verified by applying, in the final stage, the surface-penetrating sealant on the repolished surface. Data were analyzed with analysis of variance and Tukey test (P <.05). RESULTS: Results showed that the lowest surface roughness values were obtained for Definite, Z100, and Prodigy Condensable after the repolishing process and after the repolishing plus sealing. For Alert, the joining of repolishing plus sealing promoted the lowest values of surface roughness. CONCLUSION: Of the resin-based composites, Alert demonstrated the highest values of surface roughness in all the techniques tested.