957 resultados para Lower temperatures
Resumo:
Flourite-type nanocrystalline Ce0.9Fe0.1O2-delta and Ce0.89Fe0.1Pd0.01O2-delta solid solutions have been synthesized by solution combustion method,'.which show higher oxygen storage/release property (OSC) compared to CeO2 and Ce0.8Zr0.2O2. Temperature programmed reduction an XPS study reveal that the presence of Pd ion in Ce0.9Fe0.1O2-delta facilitates complete reduction of Fe3+ to Fe2+ state and partial reduction of Ce4+ to Ce3+ state at.temperatures as low as 105 degrees C compared to 400 degrees C for monometal-ionic Ce0.9Fe0.1O2-delta. Fe3+ ion is reduced to Fe2+ and not to Feo due to favorable redox potential for Ce4+ + Fe2+ -> Ce3+ + Fe3+ reaction. Using first-principles density functional theory calculation we determine M-O (M = Pd, Fe, Ce) bond lengths, and find that bond lengths vary from shorter (2.16 angstrom) to longer (2.9 angstrom) bond distances compared to mean Ce-O bond distance of 2.34 angstrom. for CeO2. Using these results in bond valence analysis, we show that oxygen with bond valences as low as -1.55 are created, leading to activation of lattice oxygen in the bimetal ionic catalyst. Temperatures of CO oxidation and NO reduction by CO/H-2 are lower with the bimetalionic Ce0.89Fe0.1Pd0.01O2-delta catalyst compared to monometal-ionic Ce0.9Fe0.1O2-delta and Ce0.99Pd0.01O2-delta catalysts. From XPS studies of Pd impregnated on CeO2 and Fe2O3 oxides, we show that the synergism leading to low temperature activation of lattice oxygen in bimetal-ionic catalyst Ce0.89Fe0.1Pd0.01O2-delta is due to low-temperature reduction of Pd2+ to Pd-0, followed by Pd-0 + 2Fe(3+) -> Pd2+ + 2Fe(2+), Pd-0 + 2Ce(4+) -> Pd2+ + 2Ce(3+) redox reaction.
Resumo:
This thesis details a Miocene aged sedimentary rock formation located in north island New Zealand. Mapping, stratigraphic logging and petrographic analysis of the rock formation ascertained that it was deposited in a deep-marine, tectonically active region. The work details the make-up of the sedimentary rocks using geochemistry and microscopy to define their origin. This definition was used to interpret the depositional model of the sediments detailing how they were transported and how they were emplaced.
Resumo:
Climate change contributes directly or indirectly to changes in species distributions, and there is very high confidence that recent climate warming is already affecting ecosystems. The Arctic has already experienced the greatest regional warming in recent decades, and the trend is continuing. However, studies on the northern ecosystems are scarce compared to more southerly regions. Better understanding of the past and present environmental change is needed to be able to forecast the future. Multivariate methods were used to explore the distributional patterns of chironomids in 50 shallow (≤ 10m) lakes in relation to 24 variables determined in northern Fennoscandia at the ecotonal area from the boreal forest in the south to the orohemiarctic zone in the north. Highest taxon richness was noted at middle elevations around 400 m a.s.l. Significantly lower values were observed from cold lakes situated in the tundra zone. Lake water alkalinity had the strongest positive correlation with the taxon richness. Many taxa had preference for lakes either on tundra area or forested area. The variation in the chironomid abundance data was best correlated with sediment organic content (LOI), lake water total organic carbon content, pH and air temperature, with LOI being the strongest variable. Three major lake groups were separated on the basis of their chironomid assemblages: (i) small and shallow organic-rich lakes, (ii) large and base-rich lakes, and (iii) cold and clear oligotrophic tundra lakes. Environmental variables best discriminating the lake groups were LOI, taxon richness, and Mg. When repeated, this kind of an approach could be useful and efficient in monitoring the effects of global change on species ranges. Many species of fast spreading insects, including chironomids, show a remarkable ability to track environmental changes. Based on this ability, past environmental conditions have been reconstructed using their chitinous remains in the lake sediment profiles. In order to study the Holocene environmental history of subarctic aquatic systems, and quantitatively reconstruct the past temperatures at or near the treeline, long sediment cores covering the last 10000 years (the Holocene) were collected from three lakes. Lower temperature values than expected based on the presence of pine in the catchment during the mid-Holocene were reconstructed from a lake with great water volume and depth. The lake provided thermal refuge for profundal, cold adapted taxa during the warm period. In a shallow lake, the decrease in the reconstructed temperatures during the late Holocene may reflect the indirect response of the midges to climate change through, e.g., pH change. The results from three lakes indicated that the response of chironomids to climate have been more or less indirect. However, concurrent shifts in assemblages of chironomids and vegetation in two lakes during the Holocene time period indicated that the midges together with the terrestrial vegetation had responded to the same ultimate cause, which most likely was the Holocene climate change. This was also supported by the similarity in the long-term trends in faunal succession for the chironomid assemblages in several lakes in the area. In northern Finnish Lapland the distribution of chironomids were significantly correlated with physical and limnological factors that are most likely to change as a result of future climate change. The indirect and individualistic response of aquatic systems, as reconstructed using the chironomid assemblages, to the climate change in the past suggests that in the future, the lake ecosystems in the north do not respond in one predictable way to the global climate change. Lakes in the north may respond to global climate change in various ways that are dependent on the initial characters of the catchment area and the lake.
Resumo:
The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.
Resumo:
Background Foot ulceration is the main precursor to lower limb amputation in patients with type 2 diabetes worldwide. Biomechanical factors have been implicated in the development of foot ulceration; however the association of these factors to ulcer healing remains less clear. It may be hypothesised that abnormalities in temporal spatial parameters (stride to stride measurements), kinematics (joint movements), kinetics (forces on the lower limb) and plantar pressures (pressure placed on the foot during walking) contribute to foot ulcer healing. The primary aim of this study is to establish the biomechanical characteristics (temporal spatial parameters, kinematics, kinetics and plantar pressures) of patients with plantar neuropathic foot ulcers compared to controls without a history of foot ulcers. The secondary aim is to assess the same biomechanical characteristics in patients with foot ulcers and controls over-time to assess whether these characteristics remain the same or change throughout ulcer healing. Methods/Design The design is a case–control study nested in a six-month longitudinal study. Cases will be participants with active plantar neuropathic foot ulcers (DFU group). Controls will consist of patients with type 2 diabetes (DMC group) and healthy participants (HC group) with no history of foot ulceration. Standardised gait and plantar pressure protocols will be used to collect biomechanical data at baseline, three and six months. Descriptive variables and primary and secondary outcome variables will be compared between the three groups at baseline and follow-up. Discussion It is anticipated that the findings from this longitudinal study will provide important information regarding the biomechanical characteristic of type 2 diabetes patients with neuropathic foot ulcers. We hypothesise that people with foot ulcers will demonstrate a significantly compromised gait pattern (reduced temporal spatial parameters, kinematics and kinetics) at base line and then throughout the follow-up period compared to controls. The study may provide evidence for the design of gait-retraining, neuro-muscular conditioning and other approaches to off-load the limbs of those with foot ulcers in order to reduce the mechanical loading on the foot during gait and promote ulcer healing.
Resumo:
We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.
Resumo:
Loop heat pipe is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications (such as in avionic cooling and submarines). Hard fill of a loop heat pipe occurs when the compensation chamber is full of liquid. A theoretical study is undertaken to investigate the issues underlying the loop beat pipe hard-fill phenomenon. The results of the study suggest that the mass of charge and the presence of a bayonet have significant impact on the loop heat pipe operation. With a largern mass of charge, a loop heat pipe hard fills at a lower heat load. As the heat load increases, there is a steep rise in the loop heat pipe operating temperature. In a loop heat pipe with a saturated compensation chamber, and also in a hard-filled loop heat pipe without a bayonet, the temperature of the compensation chamber and that of the liquid core are nearly equal. When a loop heat pipe with a bayonet hard fills, the compensation chamber and the evaporator core temperatures are different.
Resumo:
Structural relaxation behavior of a rapidly quenched (RQ) and a slowly cooled Pd40Cu30Ni10P20 metallic glass was investigated and compared. Differential scanning calorimetry was employed to monitor the relaxation enthalpies at the glass transition temperature, T-g , and the Kolrausch-Williams-Watts (KWW) stretched exponential function was used to describe its variation with annealing time. It was found that the rate of enthalpy recovery is higher in the ribbon, implying that the bulk is more resistant to relaxation at low temperatures of annealing. This was attributed to the possibility of cooling rate affecting the locations where the glasses get trapped within the potential energy landscape. The RQ process traps a larger amount of free volume, resulting in higher fragility, and in turn relaxes at the slightest thermal excitation (annealing). The slowly cooled bulk metallic glass (BMG), on the other hand, entraps lower free volume and has more short-range ordering, hence requiring a large amount of perturbation to access lower energy basins.
Resumo:
Fe-doped tungsten oxide thin films with different concentrations (0 to 2.6 at%) were synthesized on glass and alumina substrates at room temperature using DC reactive sputtering and subsequently annealed at 300oC for 1 hour in air. The alumina substrate has pre-printed interdigitated Pt-electrodes for gas sensing measurements. The effects of Fe-doping on the film structure and morphology, electronic and optical properties for gas sensing were investigated. The grain size of the different films on the alumina and Pt regions of the substrate vary only slightly between 43-57 nm with median size of about 50 nm. Raman spectra showed that the integrated intensity of W=O to O–W–O bands increases with increasing Fe concentrations and this indicated an increase in the number of defects. From XPS the different concentrations of the Fe-doped films were 0.03 at%, 1.33 at% and 2.6 at%. All the films deposited on glass substrate have shown similar visible transmittance (about 70%) but the optical band gap of the pure film decreased form 3.30 eV to 3.15 eV after doping with 2.6 at% Fe. The Fe-doped WO3 film with the highest Fe concentration (2.6 at% Fe) has shown an enhanced gas sensing properties to NO2 at relatively lower operating temperature (150oC) and this can be attributed to the decrease in the optical band gap and an increase in the number of defects compared to the pure WO3 film.
Resumo:
The critical behavior of osmotic susceptibility in an aqueous electrolyte mixture 1-propanol (1P)+water (W)+potassium chloride is reported. This mixture exhibits re-entrant phase transitions and has a nearly parabolic critical line with its apex representing a double critical point (DCP). The behavior of the susceptibility exponent is deduced from static light-scattering measurements, on approaching the lower critical solution temperatures (TL’s) along different experimental paths (by varying t) in the one-phase region. The light-scattering data analysis substantiates the existence of a nonmonotonic crossover behavior of the susceptibility exponent in this mixture. For the TL far away from the DCP, the effective susceptibility exponent γeff as a function of t displays a nonmonotonic crossover from its single limit three-dimensional (3D)-Ising value ( ∼ 1.24) toward its mean-field value with increase in t. While for that closest to the DCP, γeff displays a sharp, nonmonotonic crossover from its nearly doubled 3D-Ising value toward its nearly doubled mean-field value with increase in t. The renormalized Ising regime extends over a relatively larger t range for the TL closest to the DCP, and a trend toward shrinkage in the renormalized Ising regime is observed as TL shifts away from the DCP. Nevertheless, the crossover to the mean-field limit extends well beyond t>10−2 for the TL’s studied. The observed crossover behavior is attributed to the presence of strong ion-induced clustering in this mixture, as revealed by various structure probing techniques. As far as the critical behavior in complex or associating mixtures with special critical points (like the DCP) is concerned, our results indicate that the influence of the DCP on the critical behavior must be taken into account not only on the renormalization of the critical exponent but also on the range of the Ising regime, which can shrink with decrease in the influence of the DCP and with the extent of structuring in the system. The utility of the field variable tUL in analyzing re-entrant phase transitions is demonstrated. The effective susceptibility exponent as a function of tUL displays a nonmonotonic crossover from its asymptotic 3D-Ising value toward a value slightly lower than its nonasymptotic mean-field value of 1. This behavior in the nonasymptotic, high tUL region is interpreted in terms of the possibility of a nonmonotonic crossover to the mean-field value from lower values, as foreseen earlier in micellar systems.
Resumo:
Atmospheric aerosol particles have a significant impact on air quality, human health and global climate. The climatic effects of secondary aerosol are currently among the largest uncertainties limiting the scientific understanding of future and past climate changes. To better estimate the climatic importance of secondary aerosol particles, detailed information on atmospheric particle formation mechanisms and the vapours forming the aerosol is required. In this thesis we studied these issues by applying novel instrumentation in a boreal forest to obtain direct information on the very first steps of atmospheric nucleation and particle growth. Additionally, we used detailed laboratory experiments and process modelling to determine condensational growth properties, such as saturation vapour pressures, of dicarboxylic acids, which are organic acids often found in atmospheric samples. Based on our studies, we came to four main conclusions: 1) In the boreal forest region, both sulphurous compounds and organics are needed for secondary particle formation, the previous contributing mainly to particle formation and latter to growth; 2) A persistent pool of molecular clusters, both neutral and charged, is present and participates in atmospheric nucleation processes in boreal forests; 3) Neutral particle formation seems to dominate over ion-mediated mechanisms, at least in the boreal forest boundary layer; 4) The subcooled liquid phase saturation vapour pressures of C3-C9 dicarboxylic acids are of the order of 1e-5 1e-3 Pa at atmospheric temperatures, indicating that a mixed pre-existing particulate phase is required for their condensation in atmospheric conditions. The work presented in this thesis gives tools to better quantify the aerosol source provided by secondary aerosol formation. The results are particularly useful when estimating, for instance, anthropogenic versus biogenic influences and the fractions of secondary aerosol formation explained by neutral or ion-mediated nucleation mechanisms, at least in environments where the average particle formation rates are of the order of some tens of particles per cubic centimeter or lower. However, as the factors driving secondary particle formation are likely to vary depending on the environment, measurements on atmospheric nucleation and particle growth are needed from around the world to be able to better describe the secondary particle formation, and assess its climatic effects on a global scale.
Resumo:
Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.
Resumo:
Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.
Resumo:
Context Evidence from prospective cohort studies has suggested that high volumes of reported daily sitting time is associated with mortality.1 ,2 However, not all have observed the same association.3 Fidgeting (small movements associated with nervousness or impatience), could provide additional energy expenditure when sitting, although the relationship with sitting and health outcomes had yet to be examined. Hagger-Johnson et al examined data from nearly 13 000 women to determine whether fidgeting modified the association between sitting time and mortality. Methods This study featured prospective data from 12 778 participants (aged 37–78 years) in the Women's Cohort Study (UK). Average daily sitting time was reported for weekdays and weekend days, and combined …