947 resultados para Low-Power Image Sensors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the first time to the authors' knowledge, fiber Bragg gratings (FBGs) with >80° tilted structures nave been fabricated and characterized. Their performance in sensing temperature, strain, and the surrounding medium's refractive index was investigated. In comparison with normal FBGs and long-period gratings (LPGs), >80° tilted FBGs exhibit significantly higher refractive-index responsivity and lower thermal cross sensitivity. When the grating sensor was used to detect changes in refractive index, a responsivity as high as 340 nm/refractive-index unit near an index of 1.33 was demonstrated, which is three times higher than that of conventional LPGs. © 2006 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For micro gas turbines (MGT) of around 1 kW or less, a commercially suitable recuperator must be used to produce a thermal efficiency suitable for use in UK Domestic Combined Heat and Power (DCHP). This paper uses computational fluid dynamics (CFD) to investigate a recuperator design based on a helically coiled pipe-in-pipe heat exchanger which utilises industry standard stock materials and manufacturing techniques. A suitable mesh strategy was established by geometrically modelling separate boundary layer volumes to satisfy y + near wall conditions. A higher mesh density was then used to resolve the core flow. A coiled pipe-in-pipe recuperator solution for a 1 kW MGT DCHP unit was established within the volume envelope suitable for a domestic wall-hung boiler. Using a low MGT pressure ratio (necessitated by using a turbocharger oil cooled journal bearing platform) meant unit size was larger than anticipated. Raising MGT pressure ratio from 2.15 to 2.5 could significantly reduce recuperator volume. Dimensional reasoning confirmed the existence of optimum pipe diameter combinations for minimum pressure drop. Maximum heat exchanger effectiveness was achieved using an optimum or minimum pressure drop pipe combination with large pipe length as opposed to a large pressure drop pipe combination with shorter pipe length. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

40.00% 40.00%

Publicador:

Resumo:

X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.

A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.

Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.

The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).

First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.

Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.

Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.

The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.

To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.

The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.

The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.

Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.

The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.

In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Digital Image Processing is a rapidly evolving eld with growing applications in Science and Engineering. It involves changing the nature of an image in order to either improve its pictorial information for human interpretation or render it more suitable for autonomous machine perception. One of the major areas of image processing for human vision applications is image enhancement. The principal goal of image enhancement is to improve visual quality of an image, typically by taking advantage of the response of human visual system. Image enhancement methods are carried out usually in the pixel domain. Transform domain methods can often provide another way to interpret and understand image contents. A suitable transform, thus selected, should have less computational complexity. Sequency ordered arrangement of unique MRT (Mapped Real Transform) coe cients can give rise to an integer-to-integer transform, named Sequency based unique MRT (SMRT), suitable for image processing applications. The development of the SMRT from UMRT (Unique MRT), forward & inverse SMRT algorithms and the basis functions are introduced. A few properties of the SMRT are explored and its scope in lossless text compression is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose was to determine running economy and lactate threshold among a selection of male elite football players with high and low aerobic power. Forty male elite football players from the highest Swedish division (“Allsvenskan”) participated in the study. In a test of running economy (RE) and blood lactate accumulation the participants ran four minutes each at 10, 12, 14, and 16 km•h-1 at horizontal level with one minute rest in between each four minutes interval. After the last sub-maximal speed level the participants got two minutes of rest before test of maximal oxygen uptake (VO2max). Players that had a maximal oxygen uptake lower than the average for the total population of 57.0 mL O2•kg-1•minute-1 were assigned to the low aerobic power group (LAP) (n=17). The players that had a VO2max equal to or higher than 57.0 mL O2•kg-1•minute-1 were selected for the high aerobic power group (HAP) (n=23). The VO2max was significantly different between the HAP and LAP group. The average RE, measured as oxygen uptake at 12, 14 and 16km•h-1 was significantly lower but the blood lactate concentration was significantly higher at 14 and 16 km•h-1 for theLAP group compared with the HAP group.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate if physical measures of noise predict image quality at high and low noise levels. Method: Twenty-four images were acquired on a DR system using a Pehamed DIGRAD phantom at three kVp settings (60, 70 and 81) across a range of mAs values. The image acquisition setup consisted of 14 cm of PMMA slabs with the phantom placed in the middle at 120 cm SID. Signal-to-noise ratio (SNR) and Contrast-tonoise ratio (CNR) were calculated for each of the images using ImageJ software and 14 observers performed image scoring. Images were scored according to the observer`s evaluation of objects visualized within the phantom. Results: The R2 values of the non-linear relationship between objective visibility score and CNR (60kVp R2 = 0.902; 70Kvp R2 = 0.913; 80kVp R2 = 0.757) demonstrate a better fit for all 3 kVp settings than the linear R2 values. As CNR increases for all kVp settings the Object Visibility also increases. The largest increase for SNR at low exposure values (up to 2 mGy) is observed at 60kVp, when compared with 70 or 81kVp.CNR response to exposure is similar. Pearson r was calculated to assess the correlation between Score, OV, SNR and CNR. None of the correlations reached a level of statistical significance (p>0.01). Conclusion: For object visibility and SNR, tube potential variations may play a role in object visibility. Higher energy X-ray beam settings give lower SNR but higher object visibility. Object visibility and CNR at all three tube potentials are similar, resulting in a strong positive relationship between CNR and object visibility score. At low doses the impact of radiographic noise does not have a strong influence on object visibility scores because in noisy images objects could still be identified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background - For dose reduction actions, the principle of “image quality as good as possible” to “image quality as good as needed” requires to know whether the physical measures and visual image quality relate. Visual evaluation and objective physical measures of image quality can appear to be different. If there is no noticeable effect on the visual image quality with a low dose but there is a objective physical measure impact, then the overall dose may be reduced without compromising the diagnostic image quality. Low dose imaging can be used for certain types of observations, e.g. thoracic scoliosis, control after metal implantation for osteosynthesis, reviewing pneumonia and tuberculosis. Aim of the study - To determine whether physical measures of noise predict visual (clinical) image quality at low dose levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we demonstrate a digital signal processing (DSP) algorithm for improving spatial resolution of images captured by CMOS cameras. The basic approach is to reconstruct a high resolution (HR) image from a shift-related low resolution (LR) image sequence. The aliasing relationship of Fourier transforms between discrete and continuous images in the frequency domain is used for mapping LR images to a HR image. The method of projection onto convex sets (POCS) is applied to trace the best estimate of pixel matching from the LR images to the reconstructed HR image. Computer simulations and preliminary experimental results have shown that the algorithm works effectively on the application of post-image-captured processing for CMOS cameras. It can also be applied to HR digital image reconstruction, where shift information of the LR image sequence is known.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this investigation was to evaluate body image dissatisfaction in relation to low self-esteem due to physical appearance in students of the Faculty of Medicine at the University of Los Andes in Mérida, Venezuela.  It was a non-experimental and correlational study.  The sample included 189 students (27% male and 73% female) with an average age of 19.58 ± 1.57 (men: 19.81 years of age ± 1.74 and women: 20.24 years of age ± 1.76).  Participants were intentionally selected from first-year courses of the Medicine, Nursing and Nutrition programs.  The Body Shape Questionnaire (BSQ) (Cooper and Taylor, 1987) was the instrument used to measure body image dissatisfaction and Graffar’s modified method (Méndez and De Méndez, 1994) was applied to determine the participants’ socioeconomic status.  A descriptive analysis (frequency, percentages, mean) and an inferential analysis (one-way ANOVA) were applied to the data using SPSS (Statistical Package for Social Sciences) version 9.0.  One of the most important findings in this study was the determination of a statistically significant relationship between dissatisfaction and body image and between low self-esteem and gender χ2 (2, N= 189) = 9.686, p=0.008.  Using ANOVA also helped determine that differences in the mean for dissatisfaction and low self-esteem levels with body image and gender are statistically significant, F= 11.236; p=0.008, F=10.23; p=0.002, respectively.  Conclusions: results obtained suggest a relationship between dissatisfaction and low self-esteem due to physical appearance. Consequently, subjects reject their body image because of a distorted or undistorted perception of their physical appearance, which can possibly affect self-esteem.  Moreover, it is observed that the students’ psychological health is more related to their satisfaction with their body-image than to the way their body image is perceived. Consequently, this group of participants must be analyzed regarding their self-esteem due to body image, as an expression in the institutional environment.  It is also important to emphasize that gender may be a risk factor concerning eating disorders.  We believe the foregoing because women showed higher dissatisfaction levels because of their physical appearance being conditioned by a higher dissatisfaction with their perceived body image, which is characterized by an overestimation of the physical dimension of their body image.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydroelectric systems are well-known for large scale power generation. However, there are virtually no studies on energy harvesting with these systems to produce tens or hundreds of milliwatts. The goal of this work was to study which design parameters from large-scale systems can be applied to small-scale systems. Two types of hydro turbines were evaluated. The first one was a Pelton turbine which is suitable for high heads and low flow rates. The second one was a propeller turbine used for low heads and high flow rates. Several turbine geometries and nozzle diameters were tested for the Pelton system. For the propeller, a three-bladed turbine was tested for different heads and draft tubes. The mechanical power provided by these turbines was measured to evaluate the range of efficiencies of these systems. A small three-phase generator was developed for coupling with the turbines in order to evaluate the generated electric power. Selected turbines were used to test battery charging with hydroelectric systems and a comparison between several efficiencies of the systems was made. Keywords