963 resultados para Lorenz invariant cross section
Resumo:
Due to losses caused by water erosion, the development of techniques that increase the efficiency of soil conservation practices is fundamental. Terracing of agricultural lands is an important conservation practice. Bearing in mind that improperly built terraces may negatively affect the landscape, the purpose of this work was to evaluate the efficiency as well as the adequacy of retention terraces. Assessments were performed in four terraces implanted in different states, all located in the mideastern region of the state of Minas Gerais. The water storage efficiency of the terraces was determined by comparing the effective with the required storage capacity, as established in the project. Proposals were also made for the adequacy of the assessed terraces, based on the correction of the characteristics that jeopardized storage efficiency. The storage efficiency of three of the four assessed terraces was below the required levels (0.5-13 %). The main properties influencing storage capacity were: uniformity of ridge crest height, terrace end closure, and the cross section finishing. In two of the three low-efficiency terraces, the correction of these characteristics proved sufficient to raise the storage efficiency to nearly 100 %.
Resumo:
INTRODUCTION: Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). METHODS: Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. RESULTS: Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. CONCLUSION: IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR.
Resumo:
We study the (K-, p) reaction on nuclei with a 1 GeV/c momentum kaon beam, paying special attention to the region of emitted protons having kinetic energy above 600 MeV, which was used to claim a deeply attractive kaon nucleus optical potential. Our model describes the nuclear reaction in the framework of a local density approach and the calculations are performed following two different procedures: one is based on a many-body method using the Lindhard function and the other is based on a Monte Carlo simulation. The simulation method offers flexibility to account for processes other than kaon quasielastic scattering, such as K- absorption by one and two nucleons, producing hyperons, and allows consideration of final-state interactions of the K-, the p, and all other primary and secondary particles on their way out of the nucleus, as well as the weak decay of the produced hyperons into pi N. We find a limited sensitivity of the cross section to the strength of the kaon optical potential. We also show a serious drawback in the experimental setup-the requirement for having, together with the energetic proton, at least one charged particle detected in the decay counter surrounding the target-as we find that the shape of the original cross section is appreciably distorted, to the point of invalidating the claims made in the experimental paper on the strength of the kaon nucleus optical.
Resumo:
An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkur approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from ~100 eV up to ~5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.
Resumo:
Starting from a recent model of the η′N interaction, we evaluate the η ′-nucleus optical potential, including the contribution of lowest order in density, tρ/2mη′, together with the second-order terms accounting for η′ absorption by two nucleons. We also calculate the formation cross section of the η′bound states from (π, p) reactions on nuclei. The η′-nucleus potential suffers from uncertainties tied to the poorly known η′N interaction, which can be partially constrained by the experimental modulus of the η′N scattering length and/or the recently measured transparency ratios in η′nuclear photoproduction. Assuming an attractive interaction and taking the claimed experimental value |aη′N|= 0.1 fm, we obtain an η′optical potential in nuclear matter at saturation density of Vη′=−(8.7 + 1.8i) MeV, not attractive enough to produce η′bound states in light nuclei. Larger values of the scattering length give rise to deeper optical potentials, with moderate enough imaginary parts. For a value |aη′N|= 0.3 fm, which can still be considered to lie within the uncertainties of the experimental constraints, the spectra of light and medium nuclei show clear structures associated to η′-nuclear bound states and to threshold enhancements in the unbound region.
Resumo:
The photoproduction of η′η′-mesons off different nuclei has been measured with the CBELSA/TAPS detector system for incident photon energies between 15002200 MeV. The transparency ratio has been deduced and compared to theoretical calculations describing the propagation of η′η′-mesons in nuclei. The comparison indicates a width of the η′η′-meson of the order of Γ=1525 MeVΓ=1525 MeV at ρ=ρ0ρ=ρ0 for an average momentum pη′=1050 MeV/cpη′=1050 MeV/c, at which the η′η′-meson is produced in the nuclear rest frame. The inelastic η′Nη′N cross section is estimated to be 310 mb. Parameterizing the photoproduction cross section of η′η′-mesons by σ(A)=σ0Aασ(A)=σ0Aα, a value of α=0.84±0.03α=0.84±0.03 has been deduced.
Resumo:
Spherical gravitational wave (GW) detectors offer a wealth of so far unexplored possibilities to detect gravitational radiation. We find that a sphere can be used as a powerful testbed for any metric theory of gravity, not only general relativity as considered so far, by making use of a deconvolution procedure for all the electric components of the Riemann tensor. We also find that the spheres cross section is large at two frequencies, and advantageous at higher frequencies in the sense that a single antenna constitutes a real xylophone in its own. Proposed GW networks will greatly benefit from this. The main features of a two large sphere observatory are reported.
Resumo:
The most important features of the proposed spherical gravitational wave detectors are closely linked with their symmetry. Hollow spheres share this property with solid ones, considered in the literature so far, and constitute an interesting alternative for the realization of an omnidirectional gravitational wave detector. In this paper we address the problem of how a hollow elastic sphere interacts with an incoming gravitational wave and find an analytical solution for its normal mode spectrum and response, as well as for its energy absorption cross sections. It appears that this shape can be designed having relatively low resonance frequencies (~ 200 Hz) yet keeping a large cross section, so its frequency range overlaps with the projected large interferometers. We also apply the obtained results to discuss the performance of a hollow sphere as a detector for a variety of gravitational wave signals.
Resumo:
If there are large extra dimensions and the fundamental Planck scale is at the TeV scale, then the question arises of whether ultrahigh energy cosmic rays might probe them. We study the neutrino-nucleon cross section in these models. The elastic forward scattering is analyzed in some detail, hoping to clarify earlier discussions. We also estimate the black hole production rate. We study energy loss from graviton mediated interactions and conclude that they cannot explain the cosmic ray events above the GZK energy limit. However, these interactions could start horizontal air showers with characteristic profile and at a rate higher than in the standard model.
Resumo:
Introduction: Smuggling dissolved drugs, especially cocaine, in bottled liquids is a problem at borders nowadays. Common fluoroscopy of packages at the border cannot detect contaminated liquids. To find a dissolved drug, an immunological test using a drug-test panel has to be performed. This means that a control sample of the cargo must be opened to perform the test. As it is not possible to open all boxes, and as smugglers hide the drugcontaining boxes between regularly filled boxes, contaminated cargos can be overlooked. Investigators sometimes cannot perform the drug-test panel because they try not to arouse the smugglers' suspicion in order to follow the cargo and to find the recipient. Aims: The objective of our studies was to define non-invasive examination techniques to investigate cargos that are suspicions to contain dissolved cocaine without leaving traces on the samples. We examined vessels containing cocaine by radiological cross-section techniques such as multidetector computed tomography (MDCT) and magnetic resonance spectroscopy (MRS). Methods: In a previous study, we examined bottles of wine containing dissolved cocaine in different quantities using an MDCT unit. To distinguish between bottles containing red wine and those where cocaine was solved in the wine, cross sectional 2D-images have been reconstructed and the absorption of X-rays was quantified by measuring the mean density of the liquid inside the bottles. In our new study, we investigated phantoms containing cocaine dissolved in water with or without ethanol as well as cocaine dissolved in different sorts of commercially available wine by the use of a clinical magnetic resonance unit (3 tesla). To find out if dissolved cocaine could be detected, magnetic resonance spectroscopy (1H MRS) was performed. Results: By using a MDCT-unit and measuring the mean attenuation of X-rays, it is possible to distinguish weather substances are dissolved in a liquid or not, if a comparative liquid without any solutions is available. The increase of the mean density indicates the presence of dissolved substances without the possibility to identify the substance. By using magnetic resonance spectroscopy, dissolved cocaine can be clearly identified because it produces distinctive resonances in the spectrum. In contrast to MDCT, this technique shows a high sensitivity (detection of 1 mM cocaine in wine). Conclusions: Cross-sectional imaging techniques such as MDCT and MRS appropriated to examine cargos that are suspicious to contain dissolved cocaine. They allow to perform non-invasive investigations without leaving any trace on the cargo. While an MDCT scan can detect dissolved substances in liquids, identification of cocaine can be obtained by MR-spectroscopy. Acknowledgment: This work was supported by the Centre d'Imagerie BioMédicale (CIBM) of the University of Lausanne (UNIL), the Swiss Federal Institute of Technology Lausanne (EPFL), the University of Geneva (UniGe), the Centre Hospitalier Universitaire Vaudois (CHUV), the Hôpitaux Universitaire de Genève (HUG) and the Leenaards and the Jeantet Foundations.
Resumo:
We present supergravity solutions for 1/8-supersymmetric black supertubes with three charges and three dipoles. Their reduction to five dimensions yields supersymmetric black rings with regular horizons and two independent angular momenta. The general solution contains seven independent parameters and provides the first example of nonuniqueness of supersymmetric black holes. In ten dimensions, the solutions can be realized as D1-D5-P black supertubes. We also present a worldvolume construction of a supertube that exhibits three dipoles explicitly. This description allows an arbitrary cross section but captures only one of the angular momenta.
Resumo:
We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.
Resumo:
We have included the effective description of squark interactions with charginos/neutralinos in the MadGraph MSSM model. This effective description includes the effective Yukawa couplings, and another logarithmic term which encodes the supersymmetry-breaking. We have performed an extensive test of our implementation analyzing the results of the partial decay widths of squarks into charginos and neutralinos obtained by using FeynArts/FormCalc programs and the new model file in MadGraph. We present results for the cross-section of top-squark production decaying into charginos and neutralinos.