776 resultados para Lodge, David: Maailma on pieni
Resumo:
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.
Resumo:
This article describes the synthesis and anion binding properties of a series of ‘picket fence’ metalloporphyrin complexes, within which the metal centre is systematically varied. The porphyrin structure contains four amide bonds and is the same for each metal. The anion binding properties of these receptors are further contrasted with those of their tetraphenylporphyrin congeners to elucidate both the effect of the metal centre and the influence of the amide groups on the anion recognition process. Anion binding was demonstrated using UV/visible and 1H NMR spectroscopies, electrochemistry and luminescence. The metal centre was found to be highly influential in the strength and selectivity of binding; for example, the cadmium and mercury complexes exhibited far greater affinities for anions than the zinc complexes in competitive solvents such as DMSO. The amide functionalities were found to enhance the anion binding process.
Resumo:
In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen
Resumo:
Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines. We used data from 11 multiyear studies of bee communities to devise a program to monitor pollinators at regional, national, or international scales. In these studies, 7 different methods for sampling bees were used and bees were sampled on 3 different continents. We estimated that a monitoring program with 200–250 sampling locations each sampled twice over 5 years would provide sufficient power to detect small (2–5%) annual declines in the number of species and in total abundance and would cost U.S.$2,000,000. To detect declines as small as 1% annually over the same period would require >300 sampling locations. Given the role of pollinators in food security and ecosystem function, we recommend establishment of integrated regional and international monitoring programs to detect changes in pollinator communities.
Resumo:
Observational and numerical evidence suggest that variability in the extratropical stratospheric circulation has a demonstrable impact on tropospheric variability on intraseasonal time scales. In this study, it is demonstrated that the amplitude of the observed tropospheric response to vacillations in the stratospheric flow is quantitatively similar to the zonal-mean balanced response to the anomalous wave forcing at stratospheric levels. It is further demonstrated that the persistence of the tropospheric response is consistent with the impact of anomalous diabatic heating in the polar stratosphere as stratospheric temperatures relax to climatology. The results contradict previous studies that suggest that variations in stratospheric wave drag are too weak to account for the attendant changes in the tropospheric flow. However, the results also reveal that stratospheric processes alone cannot account for the observed meridional redistribution of momentum within the troposphere.
Resumo:
Date palm (Pheonix dactylifera) fruit contains an array of polyphenols, although how these levels alter with cultivar type and fruit ripening is unclear. Utilizing HPLC and LC-ESI-MS/MS, this study define and quantify an array of hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids in three common cultivars of dates (Ajwa, Barni, and Khalas) at the main ripening stages (kimri, khalal, rutab, and tamr). Polyphenols were at highest concentration at earlier stages of ripening, with concentrations reducing with ripening. The khalal stage of the Ajwa cultivar contained significantly higher (P < 0.001) levels of polyphenols than measured in the Barni and Khalas dates at the same degree of ripening. Furthermore, the Ajwa cultivar was the only one to contain significant quantities of anthocyanidins, in particular at the khalal stage. These data suggest dates are a significant source of polyphenols, especially if the earlier edible ripening stages are consumed or utilized as food ingredients.
Resumo:
The redistribution of a finite amount of martian surface dust during global dust storms and in the intervening periods has been modelled in a dust lifting version of the UK Mars General Circulation Model. When using a constant, uniform threshold in the model’s wind stress lifting parameterisation and assuming an unlimited supply of surface dust, multiannual simulations displayed some variability in dust lifting activity from year to year, arising from internal variability manifested in surface wind stress, but dust storms were limited in size and formed within a relatively short seasonal window. Lifting thresholds were then allowed to vary at each model gridpoint, dependent on the rates of emission or deposition of dust. This enhanced interannual variability in dust storm magnitude and timing, such that model storms covered most of the observed ranges in size and initiation date within a single multiannual simulation. Peak storm magnitude in a given year was primarily determined by the availability of surface dust at a number of key sites in the southern hemisphere. The observed global dust storm (GDS) frequency of roughly one in every 3 years was approximately reproduced, but the model failed to generate these GDSs spontaneously in the southern hemisphere, where they have typically been observed to initiate. After several years of simulation, the surface threshold field—a proxy for net change in surface dust density—showed good qualitative agreement with the observed pattern of martian surface dust cover. The model produced a net northward cross-equatorial dust mass flux, which necessitated the addition of an artificial threshold decrease rate in order to allow the continued generation of dust storms over the course of a multiannual simulation. At standard model resolution, for the southward mass flux due to cross-equatorial flushing storms to offset the northward flux due to GDSs on a timescale of ∼3 years would require an increase in the former by a factor of 3–4. Results at higher model resolution and uncertainties in dust vertical profiles mean that quasi-periodic redistribution of dust on such a timescale nevertheless appears to be a plausible explanation for the observed GDS frequency.
Resumo:
Anesthetic and analgesic agents act through a diverse range of pharmacological mechanisms. Existing empirical data clearly shows that such "microscopic" pharmacological diversity is reflected in their "macroscopic" effects on the human electroencephalogram (EEG). Based on a detailed mesoscopic neural field model we theoretically posit that anesthetic induced EEG activity is due to selective parametric changes in synaptic efficacy and dynamics. Specifically, on the basis of physiologically constrained modeling, it is speculated that the selective modification of inhibitory or excitatory synaptic activity may differentially effect the EEG spectrum. Such results emphasize the importance of neural field theories of brain electrical activity for elucidating the principles whereby pharmacological agents effect the EEG. Such insights will contribute to improved methods for monitoring depth of anesthesia using the EEG.
Resumo:
An eddy-resolving numerical model of a zonal flow, meant to resemble the Antarctic Circumpolar Current, is described and analyzed using the framework of J. Marshall and T. Radko. In addition to wind and buoyancy forcing at the surface, the model contains a sponge layer at the northern boundary that permits a residual meridional overturning circulation (MOC) to exist at depth. The strength of the residual MOC is diagnosed for different strengths of surface wind stress. It is found that the eddy circulation largely compensates for the changes in Ekman circulation. The extent of the compensation and thus the sensitivity of the MOC to the winds depend on the surface boundary condition. A fixed-heat-flux surface boundary severely limits the ability of the MOC to change. An interactive heat flux leads to greater sensitivity. To explain the MOC sensitivity to the wind strength under the interactive heat flux, transformed Eulerian-mean theory is applied, in which the eddy diffusivity plays a central role in determining the eddy response. A scaling theory for the eddy diffusivity, based on the mechanical energy balance, is developed and tested; the average magnitude of the diffusivity is found to be proportional to the square root of the wind stress. The MOC sensitivity to the winds based on this scaling is compared with the true sensitivity diagnosed from the experiments.
Resumo:
A series of coupled atmosphere–ocean–ice aquaplanet experiments is described in which topological constraints on ocean circulation are introduced to study the role of ocean circulation on the mean climate of the coupled system. It is imagined that the earth is completely covered by an ocean of uniform depth except for the presence or absence of narrow barriers that extend from the bottom of the ocean to the sea surface. The following four configurations are described: Aqua (no land), Ridge (one barrier extends from pole to pole), Drake (one barrier extends from the North Pole to 35°S), and DDrake (two such barriers are set 90° apart and join at the North Pole, separating the ocean into a large basin and a small basin, connected to the south). On moving from Aqua to Ridge to Drake to DDrake, the energy transports in the equilibrium solutions become increasingly “realistic,” culminating in DDrake, which has an uncanny resemblance to the present climate. Remarkably, the zonal-average climates of Drake and DDrake are strikingly similar, exhibiting almost identical heat and freshwater transports, and meridional overturning circulations. However, Drake and DDrake differ dramatically in their regional climates. The small and large basins of DDrake exhibit distinctive Atlantic-like and Pacific-like characteristics, respectively: the small basin is warmer, saltier, and denser at the surface than the large basin, and is the main site of deep water formation with a deep overturning circulation and strong northward ocean heat transport. A sensitivity experiment with DDrake demonstrates that the salinity contrast between the two basins, and hence the localization of deep convection, results from a deficit of precipitation, rather than an excess of evaporation, over the small basin. It is argued that the width of the small basin relative to the zonal fetch of atmospheric precipitation is the key to understanding this salinity contrast. Finally, it is argued that many gross features of the present climate are consequences of two topological asymmetries that have profound effects on ocean circulation: a meridional asymmetry (circumpolar flow in the Southern Hemisphere; blocked flow in the Northern Hemisphere) and a zonal asymmetry (a small basin and a large basin).
Resumo:
Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate.