924 resultados para Load forecast
Resumo:
Catalysts with various nickel loads were prepared on supports of ZrO2, ZrO2-Y2O3 and ZrO2-CaO, characterized by XRD and TPR and tested for activity in ethanol steam reforming. XRD of the supports identified the monoclinic crystalline phase in the ZrO2 and cubic phases in the ZrO2-Y2O3 and ZrO2-CaO supports. In the catalysts, the nickel impregnated on the supports was identified as the NiO phase. In the TPR analysis, peaks were observed showing the NiO phase having different interactions with the supports. In the catalytic tests, practically all the catalysts achieved 100% ethanol conversion, H-2 yield was near 70% and the gaseous concentrations of the other co-products varied in accordance with the equilibrium among them, affected principally by the supports. It was observed that when the ZrO2 was modified with Y2O3 and CaO, there were big changes in the CO and CO2 concentrations, which were attributed to the rise in the number of oxygen vacancies, permitting high-oxygen mobility and affecting the gaseous equilibrium. The liquid products analysis showed a low selectivity to liquid co-products during the reforming reactions. (c) 2007 Published by Elsevier B.V.
Resumo:
The Thesis focused on hardware based Load balancing solution of web traffic through a load balancer F5 content switch. In this project, the implemented scenario for distributing HTTPtraffic load is based on different CPU usages (processing speed) of multiple member servers.Two widely used load balancing algorithms Round Robin (RR) and Ratio model (weighted Round Robin) are implemented through F5 load balancer. For evaluating the performance of F5 content switch, some experimental tests has been taken on implemented scenarios using RR and Ratio model load balancing algorithms. The performance is examined in terms of throughput (bits/sec) and Response time of member servers in a load balancing pool. From these experiments we have observed that Ratio Model load balancing algorithm is most suitable in the environment of load balancing servers with different CPU usages as it allows assigning the weight according to CPU usage both in static and dynamic load balancing of servers.
Resumo:
During the last decade, the Internet usage has been growing at an enormous rate which has beenaccompanied by the developments of network applications (e.g., video conference, audio/videostreaming, E-learning, E-Commerce and real-time applications) and allows several types ofinformation including data, voice, picture and media streaming. While end-users are demandingvery high quality of service (QoS) from their service providers, network undergoes a complex trafficwhich leads the transmission bottlenecks. Considerable effort has been made to study thecharacteristics and the behavior of the Internet. Simulation modeling of computer networkcongestion is a profitable and effective technique which fulfills the requirements to evaluate theperformance and QoS of networks. To simulate a single congested link, simulation is run with asingle load generator while for a larger simulation with complex traffic, where the nodes are spreadacross different geographical locations generating distributed artificial loads is indispensable. Onesolution is to elaborate a load generation system based on master/slave architecture.
Resumo:
In Sweden solar irradiation and space heating loads are unevenly distributed over the year. Domestic hot water loads may be nearly constant. Test results on solar collector performance are often reported as yearly output of a certain collector at fixed temperatures, e g 25, 50 and 75 C. These data are not suitable for dimensioning of solar systems, because the actual performance of the collector depends heavily on solar fraction and load distribution over the year.At higher latitudes it is difficult to attain high solar fractions for buildings, due to overheating in summer and small marginal output for added collector area. Solar collectors with internal reflectors offer possibilities to evade overheating problems and deliver more energy at seasons when the load is higher. There are methods for estimating the yearly angular irradiation distribution, but there is a lack of methods for describing the load and the storage in such a way as to enable optical design of season and load adapted collectors.This report describes two methods for estimation of solar system performance with relevance for season and load adaption. Results regarding attainable solar fractions as a function of collector features, load profiles, load levels and storage characteristics are reported. The first method uses monthly collector output data at fixed temperatures from the simulation program MINSUN for estimating solar fractions for different load profiles and load levels. The load level is defined as estimated yearly collector output at constant collector temperature divided be yearly load. This table may examplify the results:CollectorLoadLoadSolar Improvementtypeprofile levelfractionover flat plateFlat plateDHW 75 %59 %Load adaptedDHW 75 %66 %12 %Flat plateSpace heating 50 %22 %Load adaptedSpace heating 50 %28 %29 %The second method utilises simulations with one-hour timesteps for collectors connected to a simplified storage and a variable load. Collector output, optical and thermal losses, heat overproduction, load level and storage temperature are presented as functions of solar incidence angles. These data are suitable for optical design of load adapted solar collectors. Results for a Stockholm location indicate that a solar combisystem with a solar fraction around 30 % should have collectors that reduce heat production at solar heights above 30 degrees and have optimum efficiency for solar heights between 8 and 30 degrees.
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.
Resumo:
Dagens kombisolvärmesystem för enfamiljshus har i storleksordningen 10 m2 solfångare och kan täcka i runda tal 10 ? 30 % av det årliga värmebehovet. Ökar man solfångarytan för att öka solvärmetäckningsgraden uppstår det vanligtvis en överproduktion av värme sommartid viket kan orsaka problem i form av termisk utmattning av material, att material förstörs eller att säkerhetsventiler utlöses med driftsstopp som följd. Vidare förkortas glykolens livslängd radikalt och detta kan ge följdskador såsom korrosion, beläggningar i rören och t o m igensättning av systemet. Ett sätt att undvika problemen med överhettning i solvärmesystem med hög täckningsgrad är att använda lastanpassade solfångare. Med detta menas solfångare som har en verkningsgrad som är beroende av solhöjden och varierar över året. Verkningsgraden är hög när värmelasten är hög (vanligtvis sen höst, vinter och tidig vår) medan verkningsgraden är låg då värmelasten är låg (vanligtvis sen vår, sommar och tidig höst). I denna rapport visas att det är möjligt att bygga lastanpassade solfångarsystem med hög täckningsgrad för enfamiljshus med solfångarytor som täcker hela villatak (>= 40 m2), utan att den termiska påfrestningen på systemet blir större än för vanliga solvärmesystem med 10 m2 plana solfångare. Detta kan göras med samma systemkomponenter som finns i system med plana solfångare. De lastanpassade solfångarna levererar ungefär samma energimängd per m2 som plana solfångare, men de bör kunna bli billigare, på grund av lägre materialkostnad. Det finns även en potential att konstruera lastanpassade solvärmesystem med begränsad stagnationstemperatur, vilket kan möjliggöra användandet av billigare material. En och samma solfångartyp är lämplig för såväl stora som små system och för olika takvinklar. I rapporten redovisas optimerade solfångargeometrier för lastanpassade solvärmesystem, geometrier och optiska egenskaper för praktiskt möjliga solfångare samt beräkningar av förväntat årsutbyte, stagnationstemperaturer, stagnationstider och kostnader. Testresultat för två prototyper av lastanpassade solfångare presenteras. Optimeringsalgoritmer för design av optiken för lastanpassade solfångare i system samt ett ray-tracingverktyg och snabba men ändå tillräckligt noggranna simuleringsverktyg har utvecklats.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise, based upon data from a well known survey is also presented. Overall, these results show promise for the feasible bias-corrected average forecast.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.
Resumo:
This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data
Resumo:
Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.
Resumo:
Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.
Resumo:
This work assesses the forecasts of three nonlinear methods | Markov Switching Autoregressive Model, Logistic Smooth Transition Auto-regressive Model, and Auto-metrics with Dummy Saturation | for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double di erencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double di erencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.