831 resultados para Linear-time-invariant systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, short term hydroelectric scheduling is formulated as a network flow optimization model and solved by interior point methods. The primal-dual and predictor-corrector versions of such interior point methods are developed and the resulting matrix structure is explored. This structure leads to very fast iterations since it avoids computation and factorization of impedance matrices. For each time interval, the linear algebra reduces to the solution of two linear systems, either to the number of buses or to the number of independent loops. Either matrix is invariant and can be factored off-line. As a consequence of such matrix manipulations, a linear system which changes at each iteration has to be solved, although its size is reduced to the number of generating units and is not a function of time intervals. These methods were applied to IEEE and Brazilian power systems, and numerical results were obtained using a MATLAB implementation. Both interior point methods proved to be robust and achieved fast convergence for all instances tested. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A non-linear model is presented which optimizes the lay-out, as well as the design and management of trickle irrigation systems, to achieve maximum net benefit. The model consists of an objective function that maximizes profit at the farm level, subject to appropriate geometric and hydraulic constraints. It can be applied to rectangular shaped fields, with uniform or zero slope. The software used is the Gams-Minos package. The basic inputs are the crop-water-production function, the cost function and cost of system components, and design variables. The main outputs are the annual net benefit and pipe diameters and lengths. To illustrate the capability of the model, a sensitivity analysis of the annual net benefit for a citrus field is evaluated with respect to irrigated area, ground slope, micro-sprinkler discharge and shape of the field. The sensitivity analysis suggests that the greatest benefit is obtained with the smallest microsprinkler discharge, the greatest area, a square field and zero ground slope. The costs of the investment and energy are the components of the objective function that had the greatest effect in the 120 situations evaluated. (C) 1996 Academic Press Limited

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article deals with some methodologies for economic and technical evaluations of cogeneration projects proposed by several authors. A discussion on design philosophy applied to thermal power plants leads to the decision problem of a conflicting, multiobjective formulation that includes the most important parameters. This model is formulated to help decision makers and designers in choosing compromise values for included parameters. (C) 1997 Elsevier B.V. Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In potentiometric-flow systems, linear-potential responses for logarithmic concentrations can be attained for first-(or pseudo-first-) order reactions in which the monitored chemical species react with the analyte during a fixed time interval. To demonstrate this property, the determination of glycerol based on its oxidation by periodate and potentiometric monitoring of the remaining periodate was selected. Influence of reagent concentration and timing on the linearity of the analytical curve were investigated. A mathematical treatment was derived, and potentialities/limitations of the approach were outlined. The system was applied to analysis of soap and lixivia samples. The analytical curve within 200 and 2000 mg L-1 (r = 0.99975; n = 5) was described as E = 8.166 + 0.0478 (glycerol). The sample throughput was 100 h(-1), and a measurement repeatability within 0.5 mV was always observed. By applying a t-test, there was no statistical difference between the results obtained by the proposed procedure and by iodimetric titration at the 95% confidence level. (C) 2000 John Wiley & Sons, Inc. Lab Robotics and Automation 12:41-45, 2000.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This note deals whith the problem of extrema which may occur in the step-response of a stable linear system with real zeros and poles. Some simple sufficients conditions and necessary conditions are presented for analyses when zeros located between the dominant and fastest pole does not cause extrema in the step-response. These conditions require knowledge of the pole-zero configuration of the corresponding transfer-function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decades there was a great development in the study of control systems to attenuate the harmful effect of natural events in great structures, as buildings and bridges. Magnetorheological fluid (MR), that is an intelligent material, has been considered in many proposals of project for these controllers. This work presents the controller design using feedback of states through LMI (Linear Matrix Inequalities) approach. The experimental test were carried out in a structure with two degrees of freedom with a connected shock absorber MR. Experimental tests were realized in order to specify the features of this semi-active controller. In this case, there exist states that are not measurable, so the feedback of the states involves the project of an estimator. The coupling of the MR damper causes a variation in dynamics properties, so an identification methods, based on experimental input/output signal was used to compare with the numerical application. The identification method of Prediction Error Methods - (PEM) was used to find the physical characteristics of the system through realization in modal space of states. This proposal allows the project of a semi-active control, where the main characteristic is the possibility of the variation of the damping coefficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is concerned with ℋ 2 and ℋ ∞ filter design for discrete-time Markov jump systems. The usual assumption of mode-dependent design, where the current Markov mode is available to the filter at every instant of time is substituted by the case where that availability is subject to another Markov chain. In other words, the mode is transmitted to the filter through a network with given transmission failure probabilities. The problem is solved by modeling a system with N modes as another with 2N modes and cluster availability. We also treat the case where the transition probabilities are not exactly known and demonstrate our conditions for calculating an ℋ ∞ norm bound are less conservative than the available results in the current literature. Numerical examples show the applicability of the proposed results. ©2010 IEEE.