959 resultados para Linear program model
Resumo:
The great developments that have occurred during the last few years in the finite element method and its applications has kept hidden other options for computation. The boundary integral element method now appears as a valid alternative and, in certain cases, has significant advantages. This method deals only with the boundary of the domain, while the F.E.M. analyses the whole domain. This has the following advantages: the dimensions of the problem to be studied are reduced by one, consequently simplifying the system of equations and preparation of input data. It is also possible to analyse infinite domains without discretization errors. These simplifications have the drawbacks of having to solve a full and non-symmetric matrix and some difficulties are incurred in the imposition of boundary conditions when complicated variations of the function over the boundary are assumed. In this paper a practical treatment of these problems, in particular boundary conditions imposition, has been carried out using the computer program shown below. Program SERBA solves general elastostatics problems in 2-dimensional continua using the boundary integral equation method. The boundary of the domain is discretized by line or elements over which the functions are assumed to vary linearly. Data (stresses and/or displacements) are introduced in the local co-ordinate system (element co-ordinates). Resulting stresses are obtained in local co-ordinates and displacements in a general system. The program has been written in Fortran ASCII and implemented on a 1108 Univac Computer. For 100 elements the core requirements are about 40 Kwords. Also available is a Fortran IV version (3 segments)implemented on a 21 MX Hewlett-Packard computer,using 15 Kwords.
Resumo:
This article presents a new material model developed with the aim of analyzing failure of blunt notched components made of nonlinear brittle materials. The model, which combines the cohesive crack model with Hencky's theory of total deformations, is used to simulate an experimental benchmark carried out previously by the authors. Such combination is achieved through the embedded crack approach concept. In spite of the unavailability of precise material data, the numerical predictions obtained show good agreement with the experimental results.
Resumo:
The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented
Resumo:
In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car). Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.
Resumo:
Poor hygienic practices and illness of restaurant employees are major contributors to the contamination of food and the occurrence of food-borne illness in the United States, costing the food industry and society billions of dollars each year. Risk factors associated with this problem include lack of proper handwashing; food handlers reporting to work sick; poor personal hygiene; and bare hand contact with ready-to-eat foods. However, traditional efforts to control these causes of food-borne illness by public health authorities have had limited impact, and have revealed the need for comprehensive and innovative programs that provide active managerial control over employee health and hygiene in restaurant establishments. Further, the introduction and eventual adoption by the food industry of such programs can be facilitated through the use of behavior-change theory. This Capstone Project develops a model program to assist restaurant owners and operators in exerting active control over health and hygiene in their establishments and provides theory-based recommendations for the introduction of the program to the food industry.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Mode of access: Internet.