971 resultados para Linear functions
Resumo:
A Investigação Operacional vem demonstrando ser uma valiosa ferramenta de gestão nos dias de hoje em que se vive num mercado cada vez mais competitivo. Através da Programação Linear pode-se reproduzir matematicamente um problema de maximização dos resultados ou minimização dos custos de produção com o propósito de auxiliar os gestores na tomada de decisão. A Programação Linear é um método matemático em que a função objectivo e as restrições assumem características lineares, com diversas aplicações no controlo de gestão, envolvendo normalmente problemas de utilização dos recursos disponíveis sujeitos a limitações impostas pelo processo produtivo ou pelo mercado. O objectivo geral deste trabalho é o de propor um modelo de Programação Linear para a programação ou produção e alocação de recursos necessários. Optimizar uma quantidade física designada função objectivo, tendo em conta um conjunto de condicionalismos endógenas às actividades em gestão. O objectivo crucial é dispor um modelo de apoio à gestão contribuindo assim para afectação eficiente de recursos escassos à disposição da unidade económica. Com o trabalho desenvolvido ficou patente a importância da abordagem quantitativa como recurso imprescindível de apoio ao processo de decisão. The operational research has proven to be a valuable management tool today we live in an increasingly competitive market. Through Linear Programming can be mathematically reproduce a problem of maximizing performance or minimizing production costs in order to assist managers in decision making. The Linear Programming is a mathematical method in which the objective function and constraints are linear features, with several applications in the control of management, usually involving problems of resource use are available subject to limitations imposed by the production process or the market. The overall objective of this work is to propose a Linear Programming model for scheduling or production and allocation of necessary resources. Optimizing a physical quantity called the objective function, given a set of endogenous constraints on management thus contributing to efficient allocation of scarce resources available to the economic unit. With the work has demonstrated the importance of the quantitative approach as essential resource to support the decision process.
Resumo:
Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer's patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
The mathematical representation of Brunswik s lens model has been usedextensively to study human judgment and provides a unique opportunity to conduct ameta-analysis of studies that covers roughly five decades. Specifically, we analyzestatistics of the lens model equation (Tucker, 1964) associated with 259 different taskenvironments obtained from 78 papers. In short, we find on average fairly high levelsof judgmental achievement and note that people can achieve similar levels of cognitiveperformance in both noisy and predictable environments. Although overall performancevaries little between laboratory and field studies, both differ in terms of components ofperformance and types of environments (numbers of cues and redundancy). An analysisof learning studies reveals that the most effective form of feedback is information aboutthe task. We also analyze empirically when bootstrapping is more likely to occur. Weconclude by indicating shortcomings of the kinds of studies conducted to date, limitationsin the lens model methodology, and possibilities for future research.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
We consider the application of normal theory methods to the estimation and testing of a general type of multivariate regressionmodels with errors--in--variables, in the case where various data setsare merged into a single analysis and the observable variables deviatepossibly from normality. The various samples to be merged can differ on the set of observable variables available. We show that there is a convenient way to parameterize the model so that, despite the possiblenon--normality of the data, normal--theory methods yield correct inferencesfor the parameters of interest and for the goodness--of--fit test. Thetheory described encompasses both the functional and structural modelcases, and can be implemented using standard software for structuralequations models, such as LISREL, EQS, LISCOMP, among others. An illustration with Monte Carlo data is presented.
Resumo:
We introduce simple nonparametric density estimators that generalize theclassical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewisepolynomials, where the coefficients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study theirperformance in a simulation study.
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.
Resumo:
Polyclonal rabbit anti-thymocyte globulin (rATG) is widely used in solid organ transplantation (SOT) as induction therapy or to treat corticosteroid-resistant rejection. In vivo, the effect of rATG on natural killer (NK) cells has not been studied. These cells are of particular relevance after SOT because classical immunosuppressive drugs do not inhibit or even can activate NK cells. A cohort of 20 recipients at low immunological risk, that had been receiving rATG as induction therapy, was analyzed for receptor repertoire, cytotoxicity and capacity of NK cells to secrete IFN-γ before kidney transplantation and at different time points thereafter. NK cells expressed fewer killer-cell immunoglobulin-like receptors (KIR), fewer activating receptors NKG2D, but more inhibitory receptor NKG2A compatible with an immature phenotype in the first 6 months post transplantation. Both cytotoxicity of NK cells and the secretion of IFN-γ were preserved over time after transplantation.
Resumo:
We introduce several exact nonparametric tests for finite sample multivariatelinear regressions, and compare their powers. This fills an important gap inthe literature where the only known nonparametric tests are either asymptotic,or assume one covariate only.
Resumo:
A new algorithm called the parameterized expectations approach(PEA) for solving dynamic stochastic models under rational expectationsis developed and its advantages and disadvantages are discussed. Thisalgorithm can, in principle, approximate the true equilibrium arbitrarilywell. Also, this algorithm works from the Euler equations, so that theequilibrium does not have to be cast in the form of a planner's problem.Monte--Carlo integration and the absence of grids on the state variables,cause the computation costs not to go up exponentially when the numberof state variables or the exogenous shocks in the economy increase. \\As an application we analyze an asset pricing model with endogenousproduction. We analyze its implications for time dependence of volatilityof stock returns and the term structure of interest rates. We argue thatthis model can generate hump--shaped term structures.