913 resultados para Lesbian, Gay, Bisexual, and Transgender Studies
Resumo:
The results of time-resolved gas phase studies of labile germylenes (GeH2 and GeMe2) and dimethylstannylene (SnMe2) reactions reported to date are considered together with data of quantum-chemical investigations of the potential energy surfaces of these systems. Reaction mechanisms are discussed. A comparison of reactivity in the series of carbene analogs, ER2 (E = Si, Ge, Sn, R = H, Me), is made.
Resumo:
The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.
Resumo:
Two 28-membered octaazamacrocycles, [28]py(2)N(6) and Me-2[28]py(2)N(6), have been synthesized. The protonation constants of the N-methyl. derivative and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 25degreesC in 0.10 mol dm(-3) KNO3. The high overall basicity of Me-2[28]py(2)N(6) is ascribed to the weaker repulsion between protonated contiguous charged ammonium sites separated by propyl chains. These studies together with NMR, UV-vis and EPR spectroscopies indicated the presence of mono- and di-nuclear species, The single crystal structure of the complex [Ni-2([28]py(2)N(6))(H2O)(4)]Cl-4.3H(2)O was determined, and showed each nickel centre in a distorted octahedral co-ordination environment. The nickel centres are held within the macrocycle at a large distance of 6.991(g) Angstrom from each other. The formation of mononuclear complexes was evaluated theoretically via molecular mechanics (MM) and molecular dynamics (MD) calculations and showed that these large macrocycles have sufficient flexibility to encapsulate metal ions with different stereo-electronic sizes. Structures for small and large metal ions are proposed.
Resumo:
New tri-functional ligands of the type R2NCCCH2SCH2CCNR2 (where R = iso-propyl, n-butyl or iso-butyl) were prepared and characterized. The coordination chemistry of these ligands with uranyl and lanthanum(III) nitrates was studied by using the IR, (HNMR)-H-1 and elemental analysis methods. Structures for the compounds [UO2(NO3)(2)((Pr2NCOCH2SCH2CONPr2)-Pr-i-Pr-i)] [UO2(NO3)(2)((Bu2NCOCH2SCH2CONBu2)-Bu-i-Bu-i)(2)] [La(NO3)(3)((Pr2NCOCH2SCH2CONPr2)-Pr-i-Pr-i)(2)] and [La(NO3)(3)((Bu2NCOCH2SCH2CONBu2)-Bu-i-Bu-i)(2)] were determined by single crystal X-ray diffraction. These structures show that the ligand acts as a bidentate chelating ligand and bonds through both the carbamoyl groups to the uranyl and lanthanum(III) nitrate groups. Solvent extraction studies show that the ligand can extract the uranyl ion from the nitric acid medium but does not show any ability to extract the americium (III) ion. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A family of oxorhenium (V) complexes of newly designed pyridylthioazophenolate ligands has been synthesized and isolated in pure form. The solid state structure of an organic compound (HL1) has been established by X-ray crystallography. The molecular structure observed in the solid state is that the two molecules of the ligand (HL1) in the asymmetric unit have similar geometries, except for the orientation of the pyridine ring. This series of organic moieties acts as tetradentate monobasic NSNO donor chelators in oxorhenium(V) complexes which has been characterized by elemental analyses, IR, H-1-NMR, UV-Vis. The complexes are 1: 1 electrolytes in nature in MeOH solution, the counter anion being ClO4). The electrochemical studies of the [(ReO)-O-V(L)Cl]ClO4 complexes in MeCN using TBAP as supporting electrolyte exhibit quasi-reversible voltammogram showing one-electron couple for [(ReO)-O-VI(L)Cl](2+)-[(ReO)-O-V(L)Cl](+) in the 1.11-1.29 V vs SCE range.
Resumo:
New N-(3-aminopropyl) (L-1, L-2) and (2-cyanoethyl) (L-3, L-4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L-1 and L-2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L-2 as well as with L-1, but the latter exhibits mononuclear complexes with slightly higher K-ML values while the dinuclear complexes of L-2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)](3+) and [(CoLCl)-Cl-3](+) revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [(CoLCl)-Cl-3](+) complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)](3+) complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.
Resumo:
Two N-methylphosphonic acid derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized, H4L1 and H6L2. The protonation constants of these compounds and the stability constants of complexes of both ligands with Ni2+, Cu2+ and Zn2+ were determined by potentiometric methods at 298 K and ionic strength 0.10 mol dm(-3) in NMe4NO3. The high overall basicity of both compounds is ascribed to the presence of the phosphonate arms. H-1 and P-31 NMR spectroscopic titrations were performed to elucidate the sequence of protonation, which were complemented by conformational analysis studies. The complexes of these ligands have stability constants of the order of or higher than those formed with ligands having the same macrocyclic backbone but acetate arms. At pH = 7 the highest pM values were found for solutions containing the compound with three acetate groups, followed immediately by those of H6L2, however, as expected, the increasing pH favours the complexes of ligands containing phosphonate groups. The single-crystal structure of Na-2[Cu(HL1)]NO3.8H(2)O has shown that the coordination geometry around the copper atom is a distorted square pyramid. Three nitrogen atoms of the macrocyclic backbone and one oxygen atom from one methylphosphonate arm define the basal plane, and the apical coordination is accomplished via the nitrogen atom trans to the pyridine ring of the macrocycle. To achieve this geometric arrangement, the macrocycle adopts a folded conformation. This structure seems consistent with Uv-vis-NIR spectroscopy for the Ni2+ and the Cu2+ complexes and with the EPR for the latter.
Resumo:
The bifunctional carbamoyl methyl sulfoxide ligands, PhCH2SOCH2CONHPh (L-1), PhCH2SOCH2CONHCH2Ph (L-2), (PhSOCH2CONPr2)-Pr-i (L-3), PhSOCH2CONBu2 (L-4), (PhSOCH2CONBu2)-Bu-i (L-5) and PhSOCH2CON(C8H17)(2) (L-6) have been synthesized and characterized by spectroscopic methods. The selected coordination chemistry of L-1, L-3, L-4 and L-5 with [UO2(NO3)(2)] and [Ce(NO3)(3)] has been evaluated. The structures of the compounds [UO2(NO3)(2)((PhSOCH2CONBu2)-Bu-i)] (10) and [Ce(NO3)(3)(PhSOCH2CONBu2)(2)] (12) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of ligand L-6 with U(VI), Pu(IV) and Am(III) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) in up to 10 M HNO3 but not for Am(III). Thermal studies on compounds 8 and 10 in air revealed that the ligands can be destroyed completely on incineration. The electron spray mass spectra of compounds 8 and 10 in acetone show that extensive ligand distribution reactions occur in solution to give a mixture of products with ligand to metal ratios of 1 : 1 and 2 : 1. However, 10 retains its solid state structure in CH2Cl2.
Resumo:
The coordination chemistry of iso-butyramide based ligands such as: (C3H7CON)-C-i((C3H7)-C-i)(2), (C3H7CON)-C-i(C4H9)(2) and (C3H7CON)-C-i((C4H9)-C-i)(2) with [UO2(NO3)(2) center dot 6H(2)O], [UO2(OO)(2) center dot 2H(2)O] {where OO = C4H3SCOCHCCCF3 (TTA), C6H5COCHCOCF3 (BTA) and C6H5COCHCOC6H5 (DBM)), [Th(NO3)(4) center dot 6H(2)O] and [La(NO3)(3) center dot 6H(2)O] has been evaluated. Structures for the compounds [UO2(NO3)(2)CC3H7CON{(C4H9)-C-i}(2))(2)] and [UO2(C6H5COCHCOC6H5)(2)((C3H7CON)-C-i{(C3H7)-C-i)(2))] have been determined by single crystal X-ray diffraction methods. Preliminary separation studies from nitric acid medium using the amide (C3H7CON)-C-i((C4H9)-C-i)(2) with U(VI), Th(IV) and La(Ill) ions showed the selective precipitation of uranyl ion from the mixture. Thermal study of the compound [UO2(NO3)(2)((C3H7CON)-C-i((C4H9)-C-i)(2))(2)] in air revealed that the ligands can be destroyed completely on incineration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L-1), (C5H7N2CH2CONBu2)-Bu-i (L-2), C3H3N2CH2CONBu2 (L-3), (C3H3N2CH2CONBu2)-Bu-i (L-4) and C5H7N2CH2CON(C8H17)(2) (L-5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L-1 to L-4 with [UO2(NO3)(2)center dot 6H(2)O], [La(NO3)(3)center dot 6H(2)O] and [Ce(NO3)(3)center dot 6H(2)O] has been evaluated. Structures for the compounds [UO2(NO3)(2) C5H7N2CH2CONBu2] (6) [UO2(NO3)(2) (C5H7N2CHCONBu2)-Bu-i] (7) and [Ce(NO3)(3){C(3)H(3)N(2)CH(2)CON(i)Bu2}(2)] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L-5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(TV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Two new metal-organic based polymeric complexes, [Cu-4(O2CCH2CO2)(4)(L)].7H(2)O (1) and [CO2(O2CCH2CO2)(2)(L)].2H(2)O (2) [L = hexamethylenetetramine (urotropine)], have been synthesized and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 is a 1D coordination polymer comprising a carboxylato, bridged Cu-4 moiety linked by a tetradentate bridging urotropine. Complex 2 is a 3D coordination polymer made of pseudo-two-dimensional layers of Co(II) ions linked by malonate anions in syn-anticonformation which are bridged by bidentate urotropine in trans fashion, Complex 1 crystallizes in the orthothombic system, space group Pmmn, with a = 14,80(2) Angstrom, b = 14.54(2) Angstrom, c = 7.325(10) Angstrom, beta = 90degrees, and Z = 4. Complex 2 crystallizes in the orthorhombic system, space group Imm2, a = 7.584(11) Angstrom, b = 15.80(2) Angstrom, c = 6.939(13) Angstrom, beta = 90.10degrees(1), and Z = 4. Variable temperature (300-2 K) magnetic behavior reveals the existence of ferro- and antiferromagnetic interactions in 1 and only antiferromagnetic interactions in 2. The best fitted parameters for complex 1 are J = 13.5 cm(-1), J = -18.1 cm(-1), and g = 2.14 considering only intra-Cu-4 interactions through carboxylate and urotropine pathways. In case of complex 2, the fit of the magnetic data considering intralayer interaction through carboxylate pathway as well as interlayer interaction via urotropine pathway gave no satisfactory result at this moment using any model known due to considerable orbital contribution of Co(II) ions to the magnetic moment and its complicated structure. Assuming isolated Co(II) ions (without any coupling, J = 0) the shape of the chi(M)T curve fits well with experimental data except at very low temperatures.
Resumo:
Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n] py(2)N(4) n = 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]- py(2)N(4) are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degreesC in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22] py(2)N(4) show significant differences from those described previously, while [24] py(2)N(4) has not been studied before and [ 26] py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [ 22]- to [26]- py(2)N(4) were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving - Williams order: NiL2+ < CuL2+ >> ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu-2([20] py(2)N(4))(H2O)(4)][Cu(H2O)(6)](SO4)(3) . 3H(2)O ( 1) and [Cu-2([20] py(2)N(4))(CH3CN)(4)][Ni([20] py(2)N(4))](2)(ClO4)(8) . H2O (2), which are composed of homodinuclear [Cu-2([20] py(2)N(4)])(H2O)(4)](4+) ( 1a) and [Cu-2([20] py(2)N(4)])(CH3CN))(4)](4+) (2a), and mononuclear species, [Cu(H2O)(6)](2+) (1b) and [Ni([20] py(2)N(4))](2+) ( 2b), respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in 1a and acetonitrile in 2a. The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) Angstrom in 1a and 2a, respectively. The mononuclear complex [Ni([20] py(2)N(4)])](2+) displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.
Resumo:
New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17]( DBF) N2O2 (L-1) and N,N'-bis(2-aminoethyl)-[22](DBF)N2O3 (L-2), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO3. Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L-2. The thermodynamic binding affinities of the metal complexes of L-2 are lower than those of L-1 as expected, but the Pb2+ complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd2+ and Pb2+ for L-1 are very high, when compared to those of Co2+, Ni2+ and Zn2+. These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper( II) complexes with both ligands were further studied by UV-vis-MR spectroscopy in DMSO-H2O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L-1 was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co2+ to Zn2+ complexes, and only the larger Cd2+ and Pb2+ manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.
Resumo:
Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).