898 resultados para Latent semantic indexing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unconscious perception is commonly described as a phenomenon that is not under intentional control and relies on automatic processes. We challenge this view by arguing that some automatic processes may indeed be under intentional control, which is implemented in task-sets that define how the task is to be performed. In consequence, those prime attributes that are relevant to the task will be most effective. To investigate this hypothesis, we used a paradigm which has been shown to yield reliable short-lived priming in tasks based on semantic classification of words. This type of study uses fast, well practised classification responses, whereby responses to targets are much less accurate if prime and target belong to a different category than if they belong to the same category. In three experiments, we investigated whether the intention to classify the same words with respect to different semantic categories had a differential effect on priming. The results suggest that this was indeed the case: Priming varied with the task in all experiments. However, although participants reported not seeing the primes, they were able to classify the primes better than chance using the classification task they had used before with the targets. When a lexical task was used for discrimination in experiment 4, masked primes could however not be discriminated. Also, priming was as pronounced when the primes were visible as when they were invisible. The pattern of results suggests that participants had intentional control on prime processing, even if they reported not seeing the primes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral studies suggest that women and men differ in the strategic elaboration of verbally encoded information especially in the absence of external task demand. However, measuring such covert processing requires other than behavioral data. The present study used event-related potentials to compare sexes in lower and higher order semantic processing during the passive reading of semantically related and unrelated word pairs. Women and men showed the same early context effect in the P1-N1 transition period. This finding indicates that the initial lexical-semantic access is similar in men and women. In contrast, sexes differed in higher order semantic processing. Women showed an earlier and longer lasting context effect in the N400 accompanied by larger signal strength in temporal networks similarly recruited by men and women. The results suggest that women spontaneously conduct a deeper semantic analysis. This leads to faster processing of related words in the active neural networks as reflected in a shorter stability of the N400 map in women. Taken together, the findings demonstrate that there is a selective sex difference in the controlled semantic analysis during passive word reading that is not reflected in different functional organization but in the depth of processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many clinical trials to evaluate treatment efficacy, it is believed that there may exist latent treatment effectiveness lag times after which medical procedure or chemical compound would be in full effect. In this article, semiparametric regression models are proposed and studied to estimate the treatment effect accounting for such latent lag times. The new models take advantage of the invariance property of the additive hazards model in marginalizing over random effects, so parameters in the models are easy to be estimated and interpreted, while the flexibility without specifying baseline hazard function is kept. Monte Carlo simulation studies demonstrate the appropriateness of the proposed semiparametric estimation procedure. Data collected in the actual randomized clinical trial, which evaluates the effectiveness of biodegradable carmustine polymers for treatment of recurrent brain tumors, are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to develop statistical methodology to facilitate indirect estimation of the concentration of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. The differences in antiretroviral drug concentrations in these organs may lead to suboptimal concentrations in one gland compared to the other. Suboptimal levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland, lead to a source of sexually transmissible virus and increase the chance of selecting for drug resistant virus. This information may be useful selecting antiretroviral drug regimen that will achieve optimal concentrations in most of male genital tract glands. Using fractionally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in each fraction that are uniquely produced by specific male accessory glands. To determine the original glandular concentrations of the surrogate markers, Lundquist solved a simultaneous series of linear equations. This method has several limitations. In particular, it does not yield a unique solution, it does not address measurement error, and it disregards inter-subject variability in the parameters. To cope with these limitations, we developed a mechanistic latent variable model based on the physiology of the male genital tract and surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with regard to the distributional assumptions on the random effects and priors. The model and Bayesian approach is validated on experimental data where the concentration of a drug should be (biologically) differentially distributed between the two glands. In this example, the Bayesian model-based conclusions are found to be robust to model specification and this hierarchical approach leads to more scientifically valid conclusions than the original methodology. In particular, unlike existing methods, the proposed model based approach was not affected by a common form of outliers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To analyse the performance of a new M. tuberculosis-specific interferon gamma (IFNgamma) assay in patients with chronic inflammatory diseases who receive immunosuppressive drugs, including tumour necrosis factor alpha (TNFalpha) inhibitors. METHODS: Cellular immune responses to the M. tuberculosis-specific antigens ESAT-6, CFP-10, TB7.7 were prospectively studied in 142 consecutive patients treated for inflammatory rheumatic conditions. Results were compared with tuberculin skin tests (TSTs). Association of both tests with risk factors for latent M. tuberculosis infection (LTBI) and BCG vaccination were determined and the influence of TNFalpha inhibitors, corticosteroids, and disease modifying antirheumatic drugs (DMARDs) on antigen-specific and mitogen-induced IFNgamma secretion was analysed. RESULTS: 126/142 (89%) patients received immunosuppressive therapy. The IFNgamma assay was more closely associated with the presence of risk factors (odds ratio (OR) = 23.8 (95% CI 5.14 to 110) vs OR = 2.77 (1.22 to 6.27), respectively; p = 0.009), but less associated with BCG vaccination than the TST (OR = 0.47 (95% CI 0.15 to 1.47) vs OR = 2.44 (0.74 to (8.01), respectively; p = 0.025). Agreement between the IFNgamma assay and TST results was low (kappa = 0.17; 95% CI 0.02 to 0.32). The odds for a positive IFNgamma assay strongly increased with increasing prognostic relevance of LTBI risk factors. Neither corticosteroids nor conventional DMARDs significantly affected IFNgamma responses, but the odds for a positive IFNgamma assay were decreased in patients treated with TNFalpha inhibitors (OR = 0.21 (95% CI 0.07 to 0.63), respectively; p = 0.006). CONCLUSIONS: These results demonstrate that the performance of the M. tuberculosis antigen-specific IFNgamma ELISA is better than the classic TST for detection of LTBI in patients receiving immunosuppressive therapy for treatment of systemic autoimmune disorders.

Relevância:

20.00% 20.00%

Publicador: