843 resultados para Lasers.
Resumo:
We study numerically optical turbulence using the particular example of a recently created, ultra-long fibre laser. For normal fibre dispersion, we observed an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a fluctuating regime with a wider spectrum. We demonstrate that the number of modes has an impact on the condensate’s lifetime. The smaller the number of modes, the more resistant is the condensate to perturbations. Experimental results show a good agreement with numerical simulations.
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.
Resumo:
The development of ultra-long (UL) cavity (hundreds of meters to several kilometres) mode-locked fibre lasers for the generation of high-energy light pulses with relatively low (sub-megahertz) repetition rates has emerged as a new rapidly advancing area of laser physics. The first demonstration of high pulse energy laser of this type was followed by a number of publications from many research groups on long-cavity Ytterbium and Erbium lasers featuring a variety of configurations with rather different mode-locked operations. The substantial interest to this new approach is stimulated both by non-trivial underlying physics and by the potential of high pulse energy laser sources with unique parameters for a range of applications in industry, bio-medicine, metrology and telecommunications. It is well known, that pulse generation regimes in mode-locked fibre lasers are determined by the intra-cavity balance between the effects of dispersion and non-linearity, and the processes of energy attenuation and amplification. The highest per-pulse energy has been achieved in normal-dispersion UL fibre lasers mode-locked through nonlinear polarization evolution (NPE) for self-modelocking operation. In such lasers are generated the so-called dissipative optical solitons. The uncompensated net normal dispersion in long-cavity resonatorsusually leads to very high chirp and, consequently, to a relatively long duration of generated pulses. This thesis presents the results of research Er-doped ultra-long (more than 1 km cavity length) fibre lasers mode-locked based on NPE. The self-mode-locked erbium-based 3.5-km-long all-fiber laser with the 1.7 µJ pulse energy at a wavelength of 1.55 µm was developed as a part of this research. It has resulted in direct generation of short laser pulses with an ultralow repetition rate of 35.1 kHz. The laser cavity has net normal-dispersion and has been fabricated from commercially-available telecom fibers and optical-fiber elements. Its unconventional linear-ring design with compensation for polarization instability ensures high reliability of the self-mode-locking operation, despite the use of a non polarization-maintaining fibers. The single pulse generation regime in all-fibre erbium mode-locking laser based on NPE with a record cavity length of 25 km was demonstrated. Modelocked lasers with such a long cavity have never been studied before. Our result shows a feasibility of stable mode-locked operation even for an ultra-long cavity length. A new design of fibre laser cavity – “y-configuration”, that offers a range of new functionalities for optimization and stabilization of mode-locked lasing regimes was proposed. This novel cavity configuration has been successfully implemented into a long-cavity normal-dispersion self-mode-locked Er-fibre laser. In particular, it features compensation for polarization instability, suppression of ASE, reduction of pulse duration, prevention of in-cavity wave breaking, and stabilization of the lasing wavelength. This laser along with a specially designed double-pass EDFA have allowed us to demonstrate anenvironmentally stable all-fibre laser system able to deliver sub-nanosecond high-energy pulses with low level of ASE noise.
Resumo:
By transforming the optical fiber span into an ultralong cavity laser, we experimentally demonstrate quasilossless transmission over long (up to 75 km) distances and virtually zero signal power variation over shorter (up to 20 km) spans, opening the way for the practical implementation of integrable nonlinear systems in optical fiber. As a by-product of our technique, the longest ever laser (to the best of our knowledge) has been implemented, with a cavity length of 75 km. A simple theory of the lossless fiber span, in excellent agreement with the observed results, is presented. © 2006 The American Physical Society.
Resumo:
A theoretical model allows for the characterization and optimization of the intra-cavity pulse evolutions in high-power fiber lasers. Multi-parameter analysis of laser performance can be made at a fraction of the computational cost. © 2010 Optical Society of America.
Resumo:
In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.
Resumo:
By means of extensive numerical modelling we have demonstrated the possibility of nonlinear pulse shaping in a mode-locked fibre laser using control of the intra-cavity propagation dynamics by adjustment of the normal net dispersion and integrated gain. Beside self-similar mode-locking, the existence of a novel type of pulse shaping regime that produces pulses with a triangular temporal intensity profile and a linear frequency chirp has been observed.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.
Resumo:
We extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths, and different pulse evolutions are observed depending on the net cavity dispersion.
Resumo:
We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.
Resumo:
Recent work on ultra-long Raman fiber lasers has shown that it is possible to create quasi-lossless transmission conditions in fiber spans long enough to be considered for high speed optical communications. This paper reviews how quasi-lossless transmission conditions are reached and presents experimental results of 40Gb/s transmission in a quasi lossless system. The performance is compared with a conventional EDFA based system.
Resumo:
We demonstrate a dual-wavelength fibre laser system using chirped fibre Bragg gratings as reflectors and dispersive elements. The system produces two synchronized trains of soliton pulses with rms jitter of 620 fs.
Resumo:
Quantum-dot mode-locked lasers are injection-locked by coherent two-tone master sources. Spectral tuning, significantly improved time-bandwidth product, and low jitter are demonstrated without deterioration of the pulse properties.