905 resultados para Langmuir-Blodgett and Langmuir-Schaefer Films


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Membrane-active antimicrobial peptides, such as polymyxin B (PxB), are currently in the spotlight as potential candidates toovercome bacterial resistance. We have designed synthetic analogs ofPxB in order to determine the structural requirements for membraneaction. Since the mechanism of action of PxB involves interaction withboth the outer membrane and the cytoplasmic membrane of Gramnegative bacteria, we have used an approach based on mimicking theouter layers of these membranes using monolayers, Langmuir-Blodgettfilms and unilamelar vesicles, and applying a battery of biophysicalmethods in order to dissect the different events of membraneinteraction. Collectively, results indicate that the PxB analogues act inthe bacterial membrane by the same mechanism than PxB, and that cationic amphipathicity determines peptide activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Visible up-conversion in ZnO:Er and ZnO:Er:Yb thin films deposited by RF magnetron sputtering under different O2-rich atmospheres has been studied. Conventional photoluminescence (325 nm laser source) and up-conversion (980 nm laser source) have been performed in the films before and after an annealing process at 800 °C. The resulting spectra demonstrate that the thermal treatment, either during or post-deposition, activates optically the Er3+ ions, being the latter process much more efficient. Moreover, the atmosphere during deposition was also found to be an important parameter, as the deposition under O2 flow increases the optical activity of Er+3 ions. In addition, the inclusion of Yb3+ ions into the films has shown an enhancement of the visible up-conversion emission at 660 nm by a factor of 4, which could be associated to either a better energy transfer from the 2F5/2 Yb level to the 4I11/2 Er one, or to the prevention of having Er2O3 clustering in the films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron energy-loss spectroscopy is used to map composition and electronic states in epitaxial La2/3Ca1/3MnO3 films grown on SrTiO3 001 and 110 substrates. It is found that in partially relaxed 110 films cationic composition and valence state of Mn3+/4+ ions are preserved across the film thickness. In contrast, in fully strained 001 films, the Ca/La ratio gradually changes across the film, being La rich at film/substrate interface and La depleted at free surface; Mn valence state changes accordingly. These observations suggest that a strongly orientation-dependent adaptative composition mechanism dominates stress accommodation in manganite films and provides microscopic understanding of their dissimilar magnetic properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, preliminary results of the use of hydrophobic thin films obtained by plasma deposition to protect grains and seeds are presented: grains coated by the films did not present biological degradation when stored in a saturated water vapor environment, but had their germination accelerated in the presence of water. A model that explains the difference of behavior of the films when exposed to water in vapor form or in liquid form, based on the formation of microchannels within the film that lead to water uptake in seeds, is presented. The model was successfully tested using quartz crystal measurements, which showed that the microchannels within the films can favor the adsorption and permeation of water when the films are immersed in water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two vegetable wastes, cork bark and grape stalks, were investigated for the removal of methylene blue from aqueous solution. The effects of contact time, dye concentration, pH, and temperature on sorption were studied relative to adsorption on a commercially-activated carbon. The highest adsorption yield was obtained within the pH range 5 to 10 for grape stalks and 7 to 10 for cork bark. The sorption kinetics of dye onto activated carbon and grape stalks was very fast. Kinetics data were fitted to the pseudo-first and second order kinetic equations, and the values of the pseudo-second-order initial rate constants were found to be 1.69 mg g-1 min-1 for activated carbon, 2.24 mg g-1 min-1 for grape stalks, and 0.90 mg g-1 min-1 for cork bark. Langmuir maximum sorption capacities for activated carbon, grape stalks, and cork bark for methylene blue estimated by the Orthogonal Distance Regression method (ODR) were 157.5 mg g-1, 105.6 mg g-1, and 30.52 mg g-1, respectively. FTIR spectra indicated that carboxylic groups and lignin play a significant role in the sorption of methylene blue. Electrostatic forces, n-p interactions, cation-p, and p-p stacking interactions contribute to methylene blue sorption onto grape stalks and cork bark. Grape stalks can be considered an efficient biosorbent and as a viable alternative to activated carbon and ion-exchange resins for the removal of methylene blue

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromium (VI) removal and its reduction to chromium (III) from aqueous solution by untreated and heat-treated Quercus cerris and heat-treated Quercus suber black agglomerate cork granules was investigated. Initial screening studies revealed that among the sorbents tested, untreated Q. cerris and Q. suber black agglomerate are the most efficient in the removal of Cr(VI) ions and were selected for adsorption essays. Heat treatment adversely affected chromium adsorption and chromium (VI) reduction in Q. cerris cork. The highest metal uptake was found at pH 3.0 for Q. cerris and pH 2.0 for black agglomerate. The experimental data fitted the Langmuir model and the calculated qmax was 22.98 mg/g in black agglomerate and 21.69 mg/g in untreated Q. cerris cork. The FTIR results indicated that while in black agglomerate, lignin is the sole component responsible for Cr(VI) sorption, and in untreated Q. cerris cork, suberin and polysaccharides also play a significant role on the sorption. The SEM-EDX results imply that chromium has a homogenous distribution within both cork granules. Also, phloemic residues in Q. cerris granules showed higher chromium concentration. The results obtained in this study show that untreated Q. cerris and black agglomerate cork granules can be an effective and economical alternative to more costly materials for the treatment of liquid wastes containing chromium

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to font problem on the tilte field the titlte of the thesis is corrected here. The title of the thesis is: Magnetic Perovskites Sr2FeMoO6 and La(1-x)Ca(x)MnO3: Synthesis, Fabrication and Characterization of Nanosized Powders and Thin Films

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work investigates the adsorption of Alizarin, Eriochrome Blue Black R and Fluorescein using chitosan, goethite and magnetite as adsorbents. For Alizarin, the best adsorbent is chitosan with a Langmuir parameter of 15.8 mmol dye/g adsorbent. For Eriochrome Blue Black R only 1.94 mmol dye/g chitosan is adsorbed. Langmuir parameters for the Alizarin adsorption on both iron oxides display one or two orders of magnitude lower than for chitosan and two orders of magnitude lower in the case of Eriochrome Blue Black R. Fluorescein does not adsorb in appreciable amounts on chitosan and it presents the lower affinity on the iron oxides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study deals with phenol adsorption on chitin and chitosan and removal of contaminants from wastewater of a petroleum refinery. The adsorption kinetic data were best fitted to first- and second-order models for chitosan and chitin, respectively. The results of adsorption isotherms showed Langmuir model more appropriately described than a Freundlich model for both adsorbents. The adsorption capacity was 1.96 and 1.26 mg/g for chitin and chitosan, respectively. Maximum removal of phenol was about 70-80% (flow rate: 1.5 mL/min, bed height: 18.5 cm, and 30 mg/L of phenol. Wastewater treatment with chitin in a fixed-bed system showed reductions of about 52 and 92% for COD and oil and greases, and for chitosan 65 and 67%, respectively. The results show improvement of the effluent quality after treatment with chitin and chitosan.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In present work, we analyzed the copper electrodeposition onto GCE (System I) and HOPGE (System II) from perchlorate solutions. The current density transients obtained from system I and II were well described through a kinetic mechanism that involves four different contributions: (a) a Langmuir type adsorption process, b) an electron transfer from Cu2+→Cu+, (c) a 3D nucleation limited by a mass transfer reaction and (d) a proton reduction process. It was observed that the values of the nucleation rate, the number of active nucleation sites were increased with the overpotential and they are bigger onto GCE in comparison with HOPGE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the adsorption capacity of chromium from contaminated aqueous solutions by using Moringa oleifera Lam. seeds. Parameters such as solution pH, adsorbent mass, contact time between solution and adsorbent, isotherms, thermodynamic, kinetics, and desorption were evaluated. The maximum adsorption capacity (Qm) calculated to be 3.191 mg g-1 for the biosorbent. Activated carbon was used for comparison purposes in addition to the biosorbent. The best fit was obtained by the Langmuir model for both adsorbents. The average desorption value indicated that both the biosorbent and activated carbon have a strong interaction with the metal. The results showed that the biosorbent has advantages owing to its low cost and efficiency in Cr3+ removal from contaminated waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II) ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were fitted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II) ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II) ions from wastewaters.