982 resultados para LITHOSPHERIC MANTLE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Entwicklung des 570 Ma alten, neoproterozoischen Agardagh - Tes-Chem Ophioliths (ATCO) in Zentralasien. Dieser Ophiolith liegt südwestlich des Baikalsees (50.5° N, 95° E) und wurde im frühen Stadium der Akkretion des Zentralasiatischen Mobilgürtels auf den nordwestlichen Rand des Tuvinisch-Mongolischen Mikrokontinentes aufgeschoben. Bei dem Zentralasiatische Mobilgürtel handelt es sich um einen riesigen Akkretions-Subduktionskomplex, der heute das größte zusammenhängende Orogen der Erde darstellt. Im Rahmen dieser Arbeit wurden eine Reihe plutonischer und vulkanischer Gesteine, sowie verschiedene Mantelgesteine des ATCO mittels mikroanalytischer und geochemischer Verfahren untersucht (Elektronenstrahlmikrosonde, Ionenstrahlmikrosonde, Spurenelement- und Isotopengeochemie). Die Auswertung dieser Daten ermöglichte die Entwicklung eines geodynamisch-petrologischen Modells zur Entstehung des ATCO. Die vulkanischen Gesteine lassen sich aufgrund ihrer Spurenelement- und Isotopenzusammensetzung in inselbogenbezogene und back-arc Becken bezogene Gesteine (IA-Gesteine und BAB-Gesteine) unterscheiden. Darüber hinaus gibt es eine weitere, nicht eindeutig zuzuordnende Gruppe, die hauptsächlich mafische Gänge umfasst. Der grösste Teil der untersuchen Vulkanite gehört zur Gruppe der IA-Gesteine. Es handelt sich um Al-reiche Basalte und basaltische Andesite, welche aus einem evolvierten Stammmagma mit Mg# 0.60, Cr ~ 180 µg/g und Ni ~ 95 µg/g hauptsächlich durch Klinopyroxenfraktionierung entstanden sind. Das Stammmagma selbst entstand durch Fraktionierung von ca. 12 % Olivin und geringen Anteilen von Cr-Spinell aus einer primären, aus dem Mantel abgeleiteten Schmelze. Die IA-Gesteine haben hohe Konzentrationen an inkompatiblen Spurenelementen (leichte-(L)- Seltenerdelement-(SEE)-Konzentrationen etwa 100-fach chondritisch, chondrit-normierte (La/Yb)c von 14.6 - 5.1), negative Nb-Anomalien (Nb/La = 0.37 - 0.62) und niedrige Zr/Nb Verhältnisse (7 - 14) relativ zu den BAB-Gesteinen. Initiale eNd Werte liegen bei etwa +5.5, initiale Bleiisotopenverhältnisse sind: 206Pb/204Pb = 17.39 - 18.45, 207Pb/204Pb = 15.49 - 15.61, 208Pb/204Pb = 37.06 - 38.05. Die Anreicherung lithophiler inkompatibler Spurenelemente (LILE) in dieser Gruppe ist signifikant (Ba/La = 11 - 130) und zeigt den Einfluss subduzierter Komponenten an. Die BAB-Gesteine repräsentieren Schmelzen, die sehr wahrscheinlich aus der gleichen Mantelquelle wie die IA-Gesteine stammen, aber durch höhere Aufschmelzgrade (8 - 15 %) und ohne den Einfluss subduzierter Komponenten entstanden sind. Sie haben niedrigere Konzentrationen an inkompatiblen Spurenelementen, flache SEE-Muster ((La/Yb)c = 0.6 - 2.4) und höhere initiale eNd Werte zwischen +7.8 und +8.5. Nb Anomalien existieren nicht und Zr/Nb Verhältnisse sind hoch (21 - 48). Um die geochemische Entwicklung der vulkanischen Gesteine des ATCO zu erklären, sind mindestens drei Komponenten erforderlich: (1) eine angereicherte, ozeaninselbasalt-ähnliche Komponente mit hoher Nb Konzentration über ~ 30 µg/g, einem niedrigen Zr/Nb Verhältnis (ca. 6.5), einem niedrigen initialen eNd Wert (um 0), aber mit radiogenen 206Pb/204Pb-, 207Pb/204Pb- und 208Pb/204Pb-Verhältnissen; (2) eine N-MORB ähnliche back-arc Becken Komponente mit flachem SEE-Muster und einem hohen initialen eNd Wert von mindestens +8.5, und (3) eine Inselbogen-Komponente aus einer verarmten Mantelquelle, welche durch die abtauchende Platte geochemisch modifiziert wurde. Die geochemische Entstehung der ATCO Vulkanite lässt sich dann am besten durch eine Kombination aus Quellenkontamination, fraktionierte Kristallisation und Magmenmischung erklären. Geodynamisch gesehen entstand der ATCO sehr wahrscheinlich in einem intraozeanischen Inselbogen - back-arc System. Bei den untersuchten Plutoniten handelt es sich um ultramafische Kumulate (Wehrlite und Pyroxenite) sowie um gabbroische Plutonite (Olivin-Gabbros bis Diorite). Die geochemischen Charakteristika der mafischen Plutonite sind deutlich unterschiedlich zu denen der vulkanischen Gesteine, weshalb sie sehr wahrscheinlich ein späteres Entwicklungsstadium des ATCO repräsentieren. Die Spurenelement-Konzentrationen in den Klinopyroxenen der ultramafischen Kumulate sind extrem niedrig, mit etwa 0.1- bis 1-fach chondritischen SEE-Konzentrationen und mit deutlich LSEE-verarmten Mustern ((La/Yb)c = 0.27 - 0.52). Berechnete Gleichgewichtsschmelzen der ultramafischen Kumulate zeigen grosse Ähnlichkeit zu primären boninitischen Schmelzen. Die primären Magmen waren daher boninitischer Zusammensetzung und entstanden in dem durch vorausgegangene Schmelzprozesse stark verarmten Mantelkeil über einer Subduktionszone. Niedrige Spurenelement-Konzentrationen zeigen einen geringen Einfluss der abtauchenden Platte an. Die Spurenelement-Konzentrationen der Gabbros sind ebenfalls niedrig, mit etwa 0.5 - 10-fach chondritischen SEE-Konzentrationen und mit variablen SEE-Mustern ((La/Yb)c = 0.25 - 2.6). Analog zu den Vulkaniten der IA-Gruppe haben alle Gabbros eine negative Nb-Anomalie mit Nb/La = 0.01 - 0.31. Die initialen eNd Werte der Gabbros variieren zwischen +4.8 und +7.1, mit einem Mittelwert von +5.9, und sind damit identisch mit denen der IA-Vulkanite. Bei den untersuchten Mantelgesteinen handelt es sich um teilweise serpentinisierte Dunite und Harzburgite, die alle durch hohe Mg/Si- und niedrige Al/Si-Verhältnisse gekennzeichnet sind. Dies zeigt einen refraktären Charakter an und steht in guter Übereinstimmung mit den hohen Cr-Zahlen (Cr#) der Spinelle (bis zu Cr# = 0.83), auf deren Basis der Aufschmelzgrad der residuellen Mantelgesteine berechnet wurde. Dieser beträgt etwa 25 %. Die geochemische Zusammensetzung und die petrologischen Daten der Ultramafite und Gabbros lassen sich am besten erklären, wenn man für die Entstehung dieser Gesteine einen zweistufigen Prozess annimmt. In einer ersten Stufe entstanden die ultramafischen Kumulate unter hohem Druck in einer Magmenkammer an der Krustenbasis, hauptsächlich durch Klinopyroxen-Fraktionierung. Bei dieser Magmenkammer handelte es sich um ein offenes System, dem von unten laufend neue Schmelze zugeführt wurde, und aus dem im oberen Bereich evolviertere Schmelzen geringerer Dichte entwichen. Diese evolvierten Schmelzen stiegen in flachere krustale Bereiche auf und bildeten dort meist isolierte Intrusionskörper. Diese Intrusionskörper erstarrten ohne Magmen-Nachschub, weshalb petrographisch sehr unterschiedliche Gesteine entstehen konnten. Eine geochemische Modifikation der abkühlenden Schmelzen erfolgte allerdings durch die Assimilation von Nebengestein. Da innerhalb der Gabbros keine signifikante Variation der initalen eNd Werte existiert, handelte es sich bei dem assimilierten Material hauptsächlich um vulkanische Gesteine des ATCO und nicht um ältere, möglicherweise kontinentale Kruste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der Mavuradonha Layered Complex repräsentiert einen 862 ? 4 Ma alten Komplex, der in einem tiefkrustalen Milieu intrudierte. Eine mehrphasige magmatische Differentiation ist in macro-rhythmischen Einheiten und kleinmaßstäblichen Lagenbau erkennbar, aus denen die Kristallisationssequenzen Pyroxenite, Gabbros/Norite, Leuko-Gabbros oder Ferro-Gabbro und Anorthosite resultieren. ?Nd-Werte zwischen + 0.3 und + 6.6 zeigen krustale Kontamination eines aus dem verarmten Mantel stammenden, tholeiitischen Ursprungsmagma an. ?Nd-Werte (+ 2.4 bis - 3.5) anderer tholeiitischer Gabbros in unmittelbarer Nähe des Komplexes deuten ebenfalls auf Krustenkontamination hin, jedoch in stärkerem Maße.Der Komplex wurde um 554 ? 13 Ma unter granulitfaziellen Bedingungen von 13 ? 2 kbar und 840 ? 30° C überprägt. Die anschließende retrograde, amphibolitfazielle Metamorphose mit Bedingungen von 11 ? 2 kbar und 680 ? 20° C ereignete sich um 546 ? 9 Ma. Abkühlung bis zur Grünschieferfazies erfolgte spätestens um 501 ? 6 Ma.Die vorgestellten Daten zeigen, dass sich der Sambesi-Gürtel im NE Simbabwes als fehlgeschlagenes Rift oder intrakratonisches Becken während einer frühen Pan-Afrikanischen Extensionsphase entwickelte, während die granulitfazielle Metamorphose um 300 Ma später erfolgte. Somit deutet die Intrusion des Mavuradonha Layered Complex rift-bedingten Magmatismus in einer frühen Riftphase an, während das Becken oder Rift während der Pan-Afrikanischen Orogenese geschlossen wurde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eifel volcanism is part of the Central European Volcanic Province (CEVP) and is located in the Rhenish Massif, close to the Rhine and Leine Grabens. The Quaternary Eifel volcanism appears to be related to a mantle plume activity. However, the causes of the Tertiary Hocheifel volcanism remain debated. We present geochronological, geochemical and isotope data to assess the geotectonic settings of the Tertiary Eifel volcanism. Based on 40Ar/39Ar dating, we were able to identify two periods in the Hocheifel activity: from 43.6 to 39.0 Ma and from 37.5 to 35.0 Ma. We also show that the pre-rifting volcanism in the northernmost Upper Rhine Graben (59 to 47 Ma) closely precede the Hocheifel volcanic activity. In addition, the volcanism propagates from south to north within the older phase of the Hocheifel activity. At the time of Hocheifel volcanism, the tectonic activity in the Hocheifel was controlled by stress field conditions identical to those of the Upper Rhine Graben. Therefore, magma generation in the Hocheifel appears to be caused by decompression due to Middle to Late Eocene extension. Our geochemical data indicate that the Hocheifel magmas were produced by partial melting of a garnet peridotite at 75-90 km depth. We also show that crustal contamination is minor although the magmas erupted through a relatively thick continental lithosphere. Sr, Nd and Pb isotopic compositions suggest that the source of the Hocheifel magmas is a mixing between depleted FOZO or HIMU-like material and enriched EM2-like material. The Tertiary Hocheifel and the Quaternary Eifel lavas appear to have a common enriched end-member. However, the other sources are likely to be distinct. In addition, the Hocheifel lavas share a depleted component with the other Tertiary CEVP lavas. Although the Tertiary Hocheifel and the Quaternary Eifel lavas appear to originate from different sources, the potential involvement of a FOZO-like component would indicate the contribution of deep mantle material. Thus, on the basis of the geochemical and isotope data, we cannot rule out the involvement of plume-type material in the Hocheifel magmas. The Ko’olau Scientific Drilling Project (KSDP) has been initiated in order to evaluate the long-term evolution of Ko’olau volcano and obtain information about the Hawaiian mantle plume. High precision Pb triple spike data, as well as Sr and Nd isotope data on KSDP lavas and Honolulu Volcanics (HVS) reveal compositional source variations during Ko’olau growth. Pb isotopic compositions indicate that, at least, three Pb end-members are present in Ko’olau lavas. Changes in the contributions of each component are recorded in the Pb, Sr and Nd isotopes stratigraphy. The radiogenic component is present, at variable proportion, in all three stages of Ko’olau growth. It shows affinities with the least radiogenic “Kea-lo8” lavas present in Mauna Kea. The first unradiogenic component was present in the main-shield stage of Ko’olau growth but its contribution decreased with time. It has EM1 type characteristics and corresponds to the “Ko’olau” component of Hawaiian mantle plume. The second unradiogenic end-member, so far only sampled by Honololu lavas, has isotopic characteristics similar to those of a depleted mantle. However, they are different from those of the recent Pacific lithosphere (EPR MORB) indicating that the HVS are not derived from MORB-related source. We suggest, instead, that the HVS result from melting of a plume material. Thus the evolution of a single Hawaiian volcano records the geochemical and isotopic changes within the Hawaiian plume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations were performed during the years 1999 to 2001 on a limed and unlimed plot within a high-elevated sessile oak forest. The oak forest (with 90 years old European beech at the understorey) was 170 to 197 years old. It is located at forest district Merzalben, location 04/0705, which is situated in the Palatinate Forest in south-west Germany. Liming was performed in December 1988 when 6 tons/ha of powdered Dolomite were brought up by the forestry department. Liming was performed to counteract the effects of soil acidification (pH(H2O) at Horizon A (0-10 cm): 3.9), which is induced by long-term (anthropogenic) acidic cloud cover and precipitation. Potentially toxic Al3+ ions, which become solubilized below pH 5, were suspected to be responsible for forest dieback and sudden death of the mature oaks. The most logical entry point for these toxic ions was suspected to occur in the highly absorptive region of the ectomycorrhizae (fungal covered root tips). However, the diversity and abundance of oak-ectomycorrhizal species and their actual roles in aluminum translocation (or blockage) were unknown. It was hypothesized that the ectomycorrhizae of sessile oaks in a limed forest would exhibit greater seasonal diversity and abundance with less evidence of incorporated aluminum than similar oak ectomycorrhizae from unlimed soils. To test this hypothesis, 12 oaks in the limed plot and 12 in an adjacent unlimed plot were selected. Each spring and fall for 2 years (1999 & 2000), 2 sets of soil cylinders (9.9 cm dia.) were extracted from Horizon A (0-10 cm), Horizon B (30-40 cm) and Horizon C (50-60 cm depth) at a distance of 1 meter from each tree base. Roots were extracted from each probe by gentle sieving and rinsing. Soil samples were retained for pH (H2O, CaCl2, and KCl) and moisture analysis. One set of roots was sorted by size and air-dried for biomass analysis. The finest mycorrhizal roots of this set were used for bound and unbound (cytosolic) mineral [Al, Ca, Mg, K, Na, Mn, S, Zn, Fe, Cd and Pb] analysis (by Landwirtschaftliche Untersuchungs- und Forschungsanstalt Rheinland Palatinate (LUFA)). Within 7 days of collection, the mycorrhizal tips from the second set of probes were excised, sorted, identified (using Agerer’s Color Atlas), counted and weighed. Seasonal diversity and abundance was characterized for 50 of the 93 isolates. The location and relative abundance of Al within the fungal and root cell walls was characterized for 68 species using 0.01% Morin dye and fluorescence microscopy. Morin complexes with Al to produce an intense yellow fluorescence. The 4 most common species (Cenococcum geophilum, Quercirhiza fibulocsytidiata, Lactarius subdulcis, Piceirhiza chordata) were prepared for bound Al, Ca, Fe and K mineral analysis by LUFA. The unlimed and limed plots were then compared. Only 46 of the 93 isolated ectomycorrhizal species had been previously associated with oaks in the literature. Mycorrhizal biomass was most abundant in Horizon A, declining with depth, drought and progressive soil acidification. Mycorrhizae were most diverse (32 species) in the limed plot, but individual species abundance was low (R Selection) in comparison to the unlimed plot, where there were fewer species (24) but each species present was abundant (K Selection). Liming increased diversity and altered dominance hierarchy, seasonal distributions and succession trends of ectomycorrhizae at all depths. Despite an expected reduction in Al content, the limed ectomycorrhizae both qualitatively (fluorescence analysis) and quantitatively (mineral analysis) contained more bound Al, especially so in Horizon A. The Al content qualitatively and quantitatively increased with depth in the unlimed and limed plots. The bound Al content fluctuated between 4000-and 20000 ppm while the unbound component was consistently lower (4 -14 ppm). The relative amount of unbound Al declined upon liming implying less availability for translocation to the crown area of the trees. This correspouds with the findings of good crown appearance and lower tree mortality in the limed zone. Each ectomycorrhizal species was unique in its ability to block, sequester (hold) or translocate Aluminum. In several species, Al uptake varied with changes in moisture, pH, depth and liming. According to the fluorescence study, about 48% of the isolated ectomycorrhizal species blocked and/or sequestered (held) Al in their mantle and/or Hartig net walls, qualitatively lowering bound Al in the adjacent root cell walls. Generally, if Al was more concentrated in the fungal walls, it was less evident in the cortex and xylem and conversely, if Al was low or absent from the fungal walls it was frequently more evident in the cortex and xylem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Southern Tyrrhenian subduction system shows a complex interaction among asthenospheric flow, subducting slab and overriding plate. To shed light on the deformations and mechanical properties of the slab and surrounding mantle, I investigated seismic anisotropy and attenuation properties through the subduction region. I used both teleseisms and slab earthquakes, analyzing shear-wave splitting on SKS and S phases, respectively. The fast polarization directions φ, and the delay time, δt, were retrieved using the method of Silver and Chan [1991. SKS and S φ reveal a complex anisotropy pattern across the subduction zone. SKS-rays sample primarily the sub-slab region showing rotation of fast directions following the curved shape of the slab and very strong anisotropy. S-rays sample mainly the slab, showing variable φ and a smaller δt. SKS and S splitting reveals a well developed toroidal flow at SW edge of the slab, while at its NE edge the pattern is not very clear. This suggests that the anisotropy is controlled by the slab rollback, responsible for about 100 km slab parallel φ in the sub-slab mantle. The slab is weakly anisotropic, suggesting the asthenosphere as main source of anisotropy. To investigate the physical properties of the slab and surrounding regions, I analyzed the seismic P and S wave attenuation. By inverting high-quality S-waves t* from slab earthquakes, 3D attenuation models down to 300 km were obtained. Attenuation results image the slab as low-attenuation body, but with heterogeneous QS and QP structure showing spot of high attenuation , between 100-200 km depth, which could be due dehydration associated to the slab metamorphism. A low QS anomaly is present in the mantle wedge beneath the Aeolian volcanic arc and could indicate mantle melting and slab dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full set of geochemical and Sr, Nd and Pb isotope data both on bulk-rock and mineral samples is provided for volcanic rocks representative of the whole stratigraphic succession of Lipari Island in the Aeolian archipelago. These data, together with petrographic observations and melt/fluid inclusion investigations from the literature, give outlines on the petrogenesis and evolution of magmas through the magmatic and eruptive history of Lipari. This is the result of nine successive Eruptive Epochs developing between 271 ka and historical times, as derived from recentmost volcanological and stratigraphic studies, combined with available radiometric ages and correlation of tephra layers and marine terrace deposits. These Eruptive Epochs are characterized by distinctive vents partly overlapping in space and time, mostly under control of the main regional tectonic trends (NNW-SSE, N-S and minor E-W). A large variety of lava flows, scoriaceous deposits, lava domes, coulees and pyroclastics are emplaced, ranging in composition through time from calcalkaline (CA) and high-K (HKCA) basaltic andesites to rhyolites. CA and HKCA basaltic andesitic to dacitic magmas were erupted between 271 and 81 ka (Eruptive Epochs 1-6) from volcanic edifices located along the western coast of the island (and subordinately the eastern Monterosa) and the M.Chirica and M.S.Angelo stratocones. These mafic to intermediate magmas mainly evolved through AFC and RAFC processes, involving fractionation of mafic phases, assimilation of wall rocks and mixing with newly injected mafic magmas. Following a 40 ka-long period of volcanic quiescence, the rhyolitic magmas were lately erupted from eruptive vents located in the southern and north-eastern sectors of Lipari between 40 ka and historical times (Eruptive Epochs 7-9). They are suggested to derive from the previous mafic to intermediate melts through AFC processes. During the early phases of rhyolitic magmatism (Eruptive Epochs 7-8), enclaves-rich rocks and banded pumices, ranging in composition from HKCA dacites to low-SiO2 rhyolites were erupted, representing the products of magma mixing between fresh mafic magmas and the fractionated rhyolitic melts. The interaction of mantle-derived magmas with the crust represents an essential process during the whole magmatic hystory of Lipari, and is responsible for the wide range of observed geochemical and isotopic variations. The crustal contribution was particularly important during the intermediate phases of activity of Lipari when the cordierite-bearing lavas were erupted from the M. S.Angelo volcano (Eruptive Epoch 5, 105 ka). These lavas are interpreted as the result of mixing and subsequent hybridization of mantle-derived magmas, akin to the ones characterizing the older phases of activity of Lipari (Eruptive Epochs 1-4), and crustal anatectic melts derived from dehydration-melting reactions of metapelites in the lower crust. A comparison between the adjacent islands of Lipari and Vulcano outlines that their mafic to intermediate magmas seem to be genetically connected and derive from a similar mantle source affected by different degrees of partial melting (and variable extent of crustal assimilation) producing either the CA magmas of Lipari (higher degrees) or the HKCA to SHO magmas of Vulcano (lower degrees). On a regional scale, the most primitive rocks (SiO2<56%, MgO>3.5%) of Lipari, Vulcano, Salina and Filicudi are suggested to derive from a similar MORB-like source, variably metasomatized by aqueous fluids coming from the slab and subordinately by the additions of sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goals of this Ph.D. study are to investigate the regional and global geophysical components related to present polar ice melting and to provide independent cross validation checks of GIA models using both geophysical data detected by satellite mission, and geological observations from far field sites, in order to determine a lower and upper bound of uncertainty of GIA effect. The subject of this Thesis is the sea level change from decades to millennia scale. Within ice2sea collaboration, we developed a Fortran numerical code to analyze the local short-term sea level change and vertical deformation resulting from the loss of ice mass. This method is used to investigate polar regions: Greenland and Antarctica. We have used mass balance based on ICESat data for Greenland ice sheet and a plausible mass balance for Antarctic ice sheet. We have determined the regional and global fingerprint of sea level variations, vertical deformations of the solid surface of the Earth and variations of shape of the geoid for each ice source mentioned above. The coastal areas are affected by the long wavelength component of GIA process. Hence understanding the response of the Earth to loading is crucial in various contexts. Based on the hypothesis that Earth mantle materials obey to a linear rheology, and that the physical parameters of this rheology can be only characterized by their depth dependence, we investigate the Glacial Isostatic Effect upon the far field sites of Mediterranean area using an improved SELEN program. We presented new and revised observations for archaeological fish tanks located along the Tyrrhenian and Adriatic coast of Italy and new RSL for the SE Tunisia. Spatial and temporal variations of the Holocene sea levels studied in central Italy and Tunisia, provided important constraints on the melting history of the major ice sheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study new tomographic models of Colombia were calculated. I used the seismicity recorded by the Colombian seismic network during the period 2006-2009. In this time period, the improvement of the seismic network yields more stable hypocentral results with respect to older data set and allows to compute new 3D Vp and Vp/Vs models. The final dataset consists of 10813 P- and 8614 S-arrival times associated to 1405 earthquakes. Tests with synthetic data and resolution analysis indicate that velocity models are well constrained in central, western and southwestern Colombia to a depth of 160 km; the resolution is poor in the northern Colombia and close to Venezuela due to a lack of seismic stations and seismicity. The tomographic models and the relocated seismicity indicate the existence of E-SE subducting Nazca lithosphere beneath central and southern Colombia. The North-South changes in Wadati-Benioff zone, Vp & Vp/Vs pattern and volcanism, show that the downgoing plate is segmented by slab tears E-W directed, suggesting the presence of three sectors. Earthquakes in the northernmost sector represent most of the Colombian seimicity and concentrated on 100-170 km depth interval, beneath the Eastern Cordillera. Here a massive dehydration is inferred, resulting from a delay in the eclogitization of a thickened oceanic crust in a flat-subduction geometry. In this sector a cluster of intermediate-depth seismicity (Bucaramanga Nest) is present beneath the elbow of the Eastern Cordillera, interpreted as the result of massive and highly localized dehydration phenomenon caused by a hyper-hydrous oceanic crust. The central and southern sectors, although different in Vp pattern show, conversely, a continuous, steep and more homogeneous Wadati-Benioff zone with overlying volcanic areas. Here a "normalthickened" oceanic crust is inferred, allowing for a gradual and continuous metamorphic reactions to take place with depth, enabling the fluid migration towards the mantle wedge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the use of the discotic liquid crystalline HBCs and conjugated polymers based on 2,7-carbazole were investigated in detail as donor materials in organic bulk-heterojunction solar cells. It has been shown that they perform efficiently in photovoltaic devices in combination with suitable acceptors. The efficiency was found to depend strongly dependent on the morphology of the film. By investigation of a series of donor materials with similar molecular structures based on both discotic molecules and conjugated polymers, a structure-performance relation was established, which is not only instructive for these materials but also serves as a guideline for improved molecular design. For the series of HBCs used in this study, it is found that the device efficiency decreases with increasing length of the alkyl substituents in the HBC. Thus, the derivative with the smallest alkyl mantle, being more crystalline compared to the HBCs with longer alkyl chains, gave the highest EQE of 12%. A large interfacial separation was found in the blend of HBC-C6,2 and PDI, since the crystallization of the acceptor occurred in a solid matrix of HBC. This led to small dispersed organized domains and benefited the charge transport. In contrast, blends of HBC-C10,6/PDI or HBC-C14,10/PDI revealed a rather homogeneous film limiting the percolation pathways due to a mixed phase. For the first time, poly(2,7-carbazole) was incorporated as a donor material in solar cells using PDI as an electron acceptor. The good fit in orbital energy levels and absorption spectra led to high efficiency. This result indicates that conjugated polymers with high band-gap can also be applied as materials to build efficient solar cells if appropriate electron acceptors are chosen. In order to enhance the light absorption ability, new ladder-type polymers based on pentaphenylene and hexaphenylene with one and three nitrogen bridges per repeat unit have been synthesized and characterized. The polymer 2 with three nitrogen bridges showed more red-shifted absorbance and emission and better packing in the solid-state than the analogous polymer 3 with only one nitrogen bridge per monomer unit. An overall efficiency as high as 1.3% under solar light was obtained for the device based on 1 and PDI, compared with 0.7% for the PCz based device. Therefore, the device performance correlates to a large extent with the solar light absorption ability and the lateral distance between conjugated polymer chains. Since the lateral distance is determined by the length and number of attached alkyl side chains, it is possible to assume that these substituents insulate the charge carrier pathways and decrease the device performance. As an additional consequence, the active semiconductor is diluted in the insulating matrix leading to a lower light absorption. This work suggests ways to improve device performance by molecular design, viz. maintaining the HOMO level while bathochromically shifting the absorption by adopting a more rigid ladder-type structure. Also, a high ratio of nitrogen bridges with small alkyl substituents was a desirable feature both in terms of adjusting the absorption and maintaining a low lateral inter-chain separation, which was necessary for obtaining high current and efficiency values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Island Basalts (OIB) provide important information on the chemical and physical characteristics of their mantle sources. However, the geochemical composition of a generated magma is significantly affected by partial melting and/or subsequent fractional crystallization processes. In addition, the isotopic composition of an ascending magma may be modified during transport through the oceanic crust. The influence of these different processes on the chemical and isotopic composition of OIB from two different localities, Hawaii and Tubuai in the Pacific Ocean, are investigated here. In a first chapter, the Os-isotope variations in suites of lavas from Kohala Volcano, Hawaii, are examined to constrain the role of melt/crust interactions on the evolution of these lavas. As 187Os/188Os sensitivity to any radiogenic contaminant strongly depend on the Os content in the melt, Os and other PGE variations are investigated first. This study reveals that Os and other PGE behavior change during the Hawaiian magma differentiation. While PGE concentrations are relatively constant in lavas with relatively primitive compositions, all PGE contents strongly decrease in the melt as it evolved through ~ 8% MgO. This likely reflects the sulfur saturation of the Hawaiian magma and the onset of sulfide fractionation at around 8% MgO. Kohala tholeiites with more than 8% MgO and rich in Os have homogeneous 187Os/188Os values likely to represent the mantle signature of Kohala lavas. However, Os isotopic ratios become more radiogenic with decreasing MgO and Os contents in the lavas, which reflects assimilation of local crust material during fractional crystallization processes. Less than 8% upper oceanic crust assimilation could have produced the most radiogenic Os-isotope ratios recorded in the shield lavas. However, these small amounts of upper crust assimilation have only negligible effects on Sr and Nd isotopic ratios and therefore, are not responsible for the Sr and Nd isotopic heterogeneities observed in Kohala lavas. In a second chapter, fractional crystallization and partial melting processes are constrained using major and trace element variations in the same suites of lavas from Kohala Volcano, Hawaii. This inverse modeling approach allows the estimation of most of the trace element composition of the Hawaiian mantle source. The calculated initial trace element pattern shows slight depletion of the concentrations from LREE to the most incompatible elements, which indicates that the incompatible element enrichments described by the Hawaiian melt patterns are entirely produced by partial melting processes. The “Kea trend” signature of lavas from Kohala Volcano is also confirmed, with Kohala lavas having lower Sr/Nd and La/Th ratios than lavas from Mauna Loa Volcano. Finally, the magmatic evolution of Tubuai Island is investigated in a last chapter using the trace element and Sr, Nd, Hf isotopic variations in mafic lava suites. The Sr, Nd and Hf isotopic data are homogeneous and typical for the HIMU-type OIB and confirms the cogenetic nature of the different mafic lavas from Tubuai Island. The trace element patterns show progressive enrichment of incompatible trace elements with increasing alkali content in the lavas, which reflect progressive decrease in the degree of partial melting towards the later volcanic events. In addition, this enrichment of incompatible trace elements is associated with relative depletion of Rb, Ba, K, Nb, Ta and Ti in the lavas, which require the presence of small amount of residual phlogopite and of a Ti-bearing phase (ilmenite or rutile) during formation of the younger analcitic and nephelinitic magmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terrestrial radioactivity for most individual is the major contributor to the total dose and is mostly provided by 238U, 232Th and 40K radionuclides. In particular indoor radioactivity is principally due to 222Rn, a radioactive noble gas descendent of 238U, second cause of lung cancer after cigarettes smoking. Vulsini Volcanic District is a well known quaternary volcanic area located between the northern Latium and southern Tuscany (Central Italy). It is characterized by an high natural radiation background resulting from the high concentrations of 238U, 232Th and 40K in the volcanic products. In this context, subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust has given rise to U, Th and K enriched melts. Almost every ancient village and town located in this part of Italy has been built with volcanic rocks pertaining to the Vulsini Volcanic District. The radiological risk of living in this area has been estimated considering separately: a. the risk associated with buildings made of volcanic products and built on volcanic rock substrates b. the risk associated to soil characteristics. The former has been evaluated both using direct 222Rn indoor measurements and simulations of “standard rooms” built with the tuffs and lavas from the Vulsini Volcanic District investigated in this work. The latter has been carried out by using in situ measurements of 222Rn activity in the soil gases. A radon risk map for the Bolsena village has been developed using soil radon measurements integrating geological information. Data of airborne radioactivity in ambient aerosol at two elevated stations in Emilia Romagna (North Italy) under the influence of Fukushima plume have been collected, effective doses have been calculated and an extensive comparison between doses associated with artificial and natural sources in different area have been described and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis, the geochemistry, petrology and geochronology of ophiolite complexes from central northern Greece were studied in detail in order to gain insights on the petrogenetic pathways and geodynamic processes that lead to their formation and evolution. The major- and trace-element content of minerals and whole rocks from all four ophiolite complexes was determined using high-precision analytical equipment. These results were then coupled with Nd and Sr isotopic measurements. In order to precisely place the evolution of these ophiolites in time, U-Pb geochronology on zircons was conducted using a SHRIMP-II. The data obtained suggest that the ophiolites studied invariably show typical characteristics of subduction-zone magmatism (e.g. negative Nb anomalies, Th enrichment). In N-MORB-normalised multielement profiles the high field-strength elements display patterns that vary from depleted to N-MORB-like. Chondrite-normalised rare-earth element (REE) profiles show flat heavy-REE patterns suggesting a shallow regime of source melting for all the ophiolites, well within the stability field of spinel lherzolite. The majority of the samples have light-REE depleted patterns. 87Sr/86Sr isotopic ratios range from 0.703184 to 0.715853 and are in cases influenced by alteration. The εNd values are positive (the majority of the mafic samples is typically 7.1-3.1) but lower than N-MORB and depleted mantle. With the exception of the Thessaloniki ophiolite that has uniform island-arc tholeiitic chemical characteristics, the rest of the ophiolites show dual chemistry consisting of rocks with minor subduction-zone characteristics that resemble chemically back-arc basin basalts (BABB) and rocks with more pronounced subduction-zone characteristics. Tectonomagmatic discrimination schemes classify the samples as island-arc tholeiites and back-arc basin basalts or N-MORB. Melting modelling carried out to evaluate source properties and degree of melting verifies the dual nature of the ophiolites. The samples that resemble back-arc basin basalts require very small degrees of melting (<10%) of fertile sources, whereas the rest of the samples require higher degrees (25-15%) of melting. As deduced from the present geochemical and petrological investigation, the ophiolites from Guevguely, Oraeokastro, Thessaloniki, and Chalkidiki represent relics of supra-subduction zone crust that formed in succeeding stages of island-arc rifting and back-arc spreading as well as in a fore arc setting. The geochronological results have provided precise determination of the timing of formation of these complexes. The age of the Guevguely ophiolite has been determined as 167±1.2 Ma, that of Thessaloniki as 169±1.4 Ma, that of Kassandra as 167±2.2 Ma and that of Sithonia as 160±1.2 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study two ophiolites and a mafic-ultramafic complexes of the northeastern Aegean Sea, Greece, have been investigated to re-evaluate their petrogenetic evolution and tectonic setting. These complexes are: the mafic-ultramafic complex of Lesvos Island and the ophiolites of Samothraki Island and the Evros area. In order to examine these complexes in detail whole-rock major- and trace-elements as well as Sr and Nd isotopes, and minerals were analysed and U-Pb SHRIMP ages on zircons were determined. The mafic-ultramafic complex of Lesvos Island consists of mantle peridotite thrusted over a tectonic mélange containing metasediments, metabasalts and a few metagabbros. This succession had previously been interpreted as an ophiolite of Late Jurassic age. The new field and geochemical data allow a reinterpretation of this complex as representing an incipient continental rift setting that led to the subsequent formation of the Meliata-Maliac-Vardar branches of Neotethys in Upper Permian times (253 ± 6 Ma) and the term “Lesvos ophiolite” should be abandoned. With proceeding subduction and closure of the Maliac Ocean in Late Jurassic times (155 Ma) the Lesvos mafic-ultramafic complex was obducted. Zircon ages of 777, 539 and 338 Ma from a gabbro strongly suggest inheritance from the intruded basement and correspond to ages of distinct terranes recently recognized in the Hellenides (e.g. Florina terrane). Geochemical similar complexes which contain rift associations with Permo-Triassic ages can be found elsewhere in Greece and Turkey, namely the Teke Dere Thrust Sheet below the Lycian Nappes (SW Turkey), the Pindos subophiolitic mélange (W Greece), the Volcanosedimentary Complex on Central Evia Island (Greece) and the Karakaya Complex (NW Turkey). This infers that the rift-related rocks from Lesvos belong to an important Permo-Triassic rifting episode in the eastern Mediterranean. The ‘in-situ’ ophiolite of Samothraki Island comprises gabbros, sparse dykes and basalt flows as well as pillows cut by late dolerite dykes and had conventionally been interpreted as having formed in an ensialic back-arc basin. The results of this study revealed that none of the basalts and dolerites resemble mid-ocean ridge or back-arc basin basalts thus suggesting that the Samothraki ophiolite cannot represent mature back-arc basin crust. The age of the complex is regarded to be 160 ± 5 Ma (i.e. Oxfordian; early Upper Jurassic), which precludes any correlation with the Lesvos mafic-ultramafic complex further south (253 ± 6 Ma; Upper Permian). Restoration of the block configuration in NE Greece, before extensional collapse of the Hellenic hinterland and exhumation of the Rhodope Metamorphic Core Complex (mid-Eocene to mid-Miocene), results in a continuous ophiolite belt from Guevgueli in the NW to Samothraki in the SE, thus assigning the latter to the Innermost Hellenic Ophiolite Belt. In view of the data of this study, the Samothraki ophiolite represents a rift propagation of the Sithonia ophiolite spreading ridge into the Chortiatis calc-alkaline arc. The ophiolite of the Evros area consists of a plutonic sequence comprising cumulate and non-cumulate gabbros with plagiogranite veins, and an extrusive sequence of basalt dykes, massive and pillow lavas as well as pyroclastic rocks. Furthermore, in the Rhodope Massif tectonic lenses of harzburgites and dunites can be found. All rocks are spatially separated. The analytical results of this study revealed an intra-oceanic island arc setting for the Evros ophiolitic rocks. During late Middle Jurassic times (169 ± 2 Ma) an intra-oceanic arc has developed above a northwards directed intra-oceanic subduction zone of the Vardar Ocean in front of the Rhodope Massif. The boninitic, island arc tholeiitic and calc-alkaline rocks reflect the evolution of the Evros island arc. The obduction of the ophiolitic rocks onto the Rhodope basement margin took place during closure of the Vardar ocean basins. The harzburgites and dunites of the Rhodope Massif are strongly depleted and resemble harzburgites from recent oceanic island arcs. After melt extraction they underwent enrichment processes by percolating melts and fluids from the subducted slab. The relationship of the peridotites and the Evros ophiolite is still ambiguous, but the stratigraphic positions of the peridotites and the ophiolitic rocks indicate separated origin. The harzburgites and dunites most probably represent remnants of the mantle wedge of the island arc of the Rhodope terrane formed above subducted slab of the Nestos Ocean in late Middle Jurassic times. During collision of the Thracia terrane with the Rhodope terrane thrusting of the Rhodope terrane onto the Thracia terrane took place, whereas the harzburgites and dunites were pushed between the two terranes now cropping out on top of the Thracia terrane of the Rhodope Massif.