971 resultados para LC-APCI-MS
Resumo:
Este estudio intenta esclarecer las transformaciones físicas y socioeconómicas de los asentamientos rurales de la región española de Castilla y León, durante la segunda mitad del siglo XX. Se analiza la evolución temporal de la forma urbana a través de un Sistema de Información Geográfico (SIG), calculando unos índices métricos y comparándolos con la información demográfica histórica. Los resultados pretenden mostrar los efectos de la especialización funcional económica, causada por la integración en las jerarquías productivas globales, sobre la estructura urbana. La pérdida gradual de las características tradicionales de los pueblos castellanos, como la compacidad y la integración en el entorno, debido a la pérdida o degradación de la arquitectura popular y la construcción de nuevas edificaciones industriales, supone un riesgo para las futuras políticas de desarrollo local. Se considera necesario preservar la identidad paisajística y evitar la destrucción del patrimonio cultural para poder revitalizar estos territorios.
Resumo:
Monocytes can differentiate into dendritic cells (DC), cells with a pivotal role in both protective immunity and tolerance. Defects in the maturation or function of DC may be important in the development of autoimmune disease. We sought to establish if there were differences in the cytokine (granulocyte-macrophage colony-stimulating factor and IL-4)-driven maturation of monocytes to DC in patients with MS and whether drugs used to treat MS affected this process in vitro. We have demonstrated that there is no defect in the ability of magnetic activated cell sorting (MACS)-purified monocytes from patients with MS to differentiate to DC, but equally they show no tendency to acquire a DC phenotype without exogenous cytokines. Interferon-beta1a prevents the acquisition of a full DC phenotype as determined by light and electron microscopy and by flow cytometry. Methylprednisolone not only prevents the development of monocyte-derived DC but totally redirects monocyte differentiation towards a macrophage phenotype. Evidence is evolving for a role for DC in central nervous system immunity, either within the brain or in cervical lymph nodes. The demonstrated effect of both drugs on monocyte differentiation may represent an important site for immune therapy in MS.
Resumo:
Amphibian skin is a morphologically, biochemically and physiologically complex organ that performs the wide range of functions necessary for amphibian survival. Here we describe the primary structures of representatives of two novel classes of amphibian skin antimicrobials, dermatoxin and phylloxin, from the skin secretion of Phyllomedusa sauvagei, deduced from their respective precursor encoding cDNAs cloned from a lyophilized skin secretion library. A degenerate primer, designed to a highly conserved domain in the 5'-untranslated region of analogous peptide precursor cDNAs from Phyllomedusa bicolor, was employed in a 3'-RACE reaction. Peptides with molecular masses coincident with precursor-deduced mature toxin peptides were identified in LC/MS fractions of skin secretion and primary structures were confirmed by MS/MS fragmentation. This integrated experimental approach can thus rapidly expedite the primary structural characterization of amphibian skin peptides in a manner that circumvents specimen sacrifice whilst preserving robustness of scientific data.
Resumo:
The defensive skin secretions of many amphibians contain a wide spectrum of biologically active compounds, particularly antimicrobial peptides that act as a first line of defence against bacterial infection. Here we describe for the first time the identification of three novel dermaseptin-related peptides (dermaseptins sVI–sVIII) whose primary structures were deduced from cDNAs cloned from a library constructed from lyophilised skin secretion of the South American hylid frog, Phyllomedusa sauvagei. The molecular masses of each were subsequently confirmed by interrogation of archived LC/MS files of fractionated skin secretion followed by automated Edman degradation sequencing. The heterogeneity of primary structures encountered in amphibian skin antimicrobial peptides may in part be explained by individual variation—a factor essential for selective functional molecular evolution and perhaps, ultimately in speciation.
Resumo:
Aureins are a family of peptides (13-25 residues), some of which possess potent antimicrobial and anti-cancer properties, which have been classified into 5 subgroups based upon primary structural similarities. They were originally isolated from the defensive skin secretions of the closely related Australian bell frogs, Litoria aurea and Litoria raniformis, and of the 23 aurein peptides identified, 10 are common to both species. Using a recently developed technique, we have constructed a cDNA library from the defensive secretion of the green and golden bell frog, L. aurea, and successfully cloned a range of aurein precursor transcripts containing entire open-reading frames. All open-reading frames consisted of a putative signal peptide and an acidic pro-region followed by a single copy of aurein. The deduced precursor structures for the most active aureins (2.2 and 3.1) confirmed the presence of a C-terminal amidation motif whereas that of aurein 5.3 did not. Processed peptides corresponding in molecular mass to aureins 2.2, 2.3, 2.5, 3.1 and 5.3 were identified in the same secretion sample using LC/MS. The application of this technique thus permits parallel peptidomic and transcriptomic analyses on the same lyophilized skin secretion sample circumventing sacrifice of specimens of endangered herpetofauna.
Resumo:
Anticoccidials are compounds that are widely used as feed additives to prevent and treat coccidiosis. They are licensed for use in a prescribed concentration and during a certain time interval for broilers and pullets but not for laying hens. It was shown in the past that carry-over at the feeding mill is found to be the main reason for the presence of residues in eggs. An animal experiment was set up to investigate the effect of carry-over at the feeding mill on the presence of residues of anticoccidials in eggs. For the compounds diclazuril, robenidine, halofuginone and nicarbazin in combination with narasin, two concentration levels were tested: the maximum allowed concentration for broilers (100%) and a concentration corresponding to 5% carry-over during feed preparation. Also dimetridazole was included in the experiment but only at one concentration level. Eggs were sampled during treatment (14 days) and for a period of 30 days after withdrawal of the anticoccidial-containing feed. Residues were determined, and deposition and depletion curves were generated. Analyses were performed by ELISA and LC-MS/MS. For all compounds, substantial residues could be found in the 5% groups, which points out the risk of carry-over at the feeding mill. The distribution of the residues between egg yolk and white was determined by analyzing both fractions.
Resumo:
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met(29) > Met(30) > Met(13), with Met(79) being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Nonenzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low-abundance posttranslational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron-transfer dissociation (ETD) and collision induced dissociation ( CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus.
Resumo:
RNase A (1 mM) was incubated with glucose (0.4 M) at 37degreesC for up to 14 days in phosphate buffer (0.2 M, pH 7.4), digested with trypsin and analysed by LC-MS. The major sites of fructoselysine formation were Lys(1), Lys(7), Lys(37) and Lys(41). Three of these sites (Lys(7), Lys(37) and Lys(41)) were also the major sites of N-epsilon-(carboxymethyl)lysine formation.
Resumo:
Presentación. Angelina Muñiz: hacia la construcción de una identidad más allá de las líneas fronterizas