805 resultados para Krueger, Bob
Resumo:
The warm conveyor belt (WCB) of an extratropical cyclone generally splits into two branches. One branch (WCB1) turns anticyclonically into the downstream upper-level tropospheric ridge, while the second branch (WCB2) wraps cyclonically around the cyclone centre. Here, the WCB split in a typical North Atlantic cold-season cyclone is analysed using two numerical models: the Met Office Unified Model and the COSMO model. The WCB flow is defined using off-line trajectory analysis. The two models represent the WCB split consistently. The split occurs early in the evolution of the WCB with WCB1 experiencing maximum ascent at lower latitudes and with higher moisture content than WCB2. WCB1 ascends abruptly along the cold front where the resolved ascent rates are greatest and there is also line convection. In contrast, WCB2 remains at lower levels for longer before undergoing saturated large-scale ascent over the system's warm front. The greater moisture in WCB1 inflow results in greater net potential temperature change from latent heat release, which determines the final isentropic level of each branch. WCB1 also exhibits lower outflow potential vorticity values than WCB2. Complementary diagnostics in the two models are utilised to study the influence of individual diabatic processes on the WCB. Total diabatic heating rates along the WCB branches are comparable in the two models with microphysical processes in the large-scale cloud schemes being the major contributor to this heating. However, the different convective parameterisation schemes used by the models cause significantly different contributions to the total heating. These results have implications for studies on the influence of the WCB outflow in Rossby wave evolution and breaking. Key aspects are the net potential temperature change and the isentropic level of the outflow which together will influence the relative mass going into each WCB branch and the associated negative PV anomalies at the tropopause-level flow.
Resumo:
A comprehensive quality assessment of the ozone products from 18 limb-viewing satellite instruments is provided by means of a detailed intercomparison. The ozone climatologies in form of monthly zonal mean time series covering the upper troposphere to lower mesosphere are obtained from LIMS, SAGE I/II/III, UARS-MLS, HALOE, POAM II/III, SMR, OSIRIS, MIPAS, GOMOS, SCIAMACHY, ACE-FTS, ACE-MAESTRO, Aura-MLS, HIRDLS, and SMILES within 1978–2010. The intercomparisons focus on mean biases of annual zonal mean fields, interannual variability, and seasonal cycles. Additionally, the physical consistency of the data is tested through diagnostics of the quasi-biennial oscillation and Antarctic ozone hole. The comprehensive evaluations reveal that the uncertainty in our knowledge of the atmospheric ozone mean state is smallest in the tropical and midlatitude middle stratosphere with a 1σ multi-instrument spread of less than ±5%. While the overall agreement among the climatological data sets is very good for large parts of the stratosphere, individual discrepancies have been identified, including unrealistic month-to-month fluctuations, large biases in particular atmospheric regions, or inconsistencies in the seasonal cycle. Notable differences between the data sets exist in the tropical lower stratosphere (with a spread of ±30%) and at high latitudes (±15%). In particular, large relative differences are identified in the Antarctic during the time of the ozone hole, with a spread between the monthly zonal mean fields of ±50%. The evaluations provide guidance on what data sets are the most reliable for applications such as studies of ozone variability, model-measurement comparisons, detection of long-term trends, and data-merging activities.
Resumo:
Monthly zonal mean climatologies of atmospheric measurements from satellite instruments can have biases due to the nonuniform sampling of the atmosphere by the instruments. We characterize potential sampling biases in stratospheric trace gas climatologies of the Stratospheric Processes and Their Role in Climate (SPARC) Data Initiative using chemical fields from a chemistry climate model simulation and sampling patterns from 16 satellite-borne instruments. The exercise is performed for the long-lived stratospheric trace gases O3 and H2O. Monthly sampling biases for O3 exceed 10% for many instruments in the high-latitude stratosphere and in the upper troposphere/lower stratosphere, while annual mean sampling biases reach values of up to 20% in the same regions for some instruments. Sampling biases for H2O are generally smaller than for O3, although still notable in the upper troposphere/lower stratosphere and Southern Hemisphere high latitudes. The most important mechanism leading to monthly sampling bias is nonuniform temporal sampling, i.e., the fact that for many instruments, monthly means are produced from measurements which span less than the full month in question. Similarly, annual mean sampling biases are well explained by nonuniformity in the month-to-month sampling by different instruments. Nonuniform sampling in latitude and longitude are shown to also lead to nonnegligible sampling biases, which are most relevant for climatologies which are otherwise free of biases due to nonuniform temporal sampling.
Resumo:
We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ di↵erent numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should—except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably di↵erent. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively di↵erent behavior—although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.
Resumo:
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
Resumo:
Foreword by Al Gore, former Vice President of the United States Endorsements by Keith Ambachsheer, James Gifford, John Kay, Bob Monks, Knut Rostad and Anne Stausboll
Resumo:
A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The DYMECS project (Dynamical and Microphysical Evolution of Convective Storms) is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, we have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. We have related these structures to storm life-cycles derived by tracking features in the rainfall from the UK radar network, and compared them statistically to storm structures in the Met Office model, which we ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. We also evaluated the scale and intensity of convective updrafts using a new radar technique. We find that the horizontal size of simulated convective storms and the updrafts within them is much too large at 1.5-km resolution, such that the convective mass flux of individual updrafts can be too large by an order of magnitude. The scale of precipitation cores and updrafts decreases steadily with decreasing grid lengths, as does the typical storm lifetime. The 200-m grid-length simulation with standard mixing length performs best over all diagnostics, although a greater mixing length improves the representation of deep convective storms.
Resumo:
The use of dietary intervention in the elderly in order to beneficially modulate their gut microbiota has not been extensively studied. The influence of two probiotics (Bifidobacterium longum and Lactobacillus fermentum) and two prebiotics [isomaltooligosaccharides (IMO) and short-chain fructooligosaccharides (FOS)], individually and in synbiotic combinations (B. longum with IMO, L. fermentum with FOS) on the gut microbiota of elderly individuals was investigated using faecal batch cultures and three-stage continuous culture systems. Population changes of major bacterial groups were enumerated using fluorescent in situ hybridisation (FISH). B. longum and IMO alone significantly increased the Bifidobacterium count after 5 and 10 h of fermentation and their synbiotic combination significantly decreased the Bacteroides count after 5 h of fermentation. L. fermentum and FOS alone significantly increased the Bifidobacterium count after 10 h and 5, 10 and 24 h of fermentation respectively. B. longum with IMO as well as B. longum and IMO alone significantly increased acetic acid concentration during the fermentation in batch cultures. In the three-stage continuous culture systems, both synbiotic combinations increased the Bifidobacterium and Lactobacillus count in the third vessel representing the distal colon. In addition, the synbiotic combination of L. fermentum with scFOS resulted in a significant increase in the concentration of acetic acid. The results show that the elderly gut microbiota can be modulated in vitro with the appropriate pro-, pre- and synbiotics.
Resumo:
This study presents an evaluation of the size and strength of convective updraughts in high-resolution simulations by the UK Met Office Unified Model (UM). Updraught velocities have been estimated from range–height indicator (RHI) Doppler velocity measurements using the Chilbolton advanced meteorological radar, as part of the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project. Based on mass continuity and the vertical integration of the observed radial convergence, vertical velocities tend to be underestimated for convective clouds due to the undetected cross-radial convergence. Velocity fields from the UM at a resolution corresponding to the radar observations are used to scale such estimates to mitigate the inherent biases. The analysis of more than 100 observed and simulated storms indicates that the horizontal scale of updraughts in simulations tend to decrease with grid length; the 200 m grid length agreed most closely with the observations. Typical updraught mass fluxes in the 500 m grid length simulations were up to an order of magnitude greater than observed, and greater still in the 1.5 km grid length simulations. The effect of increasing the mixing length in the sub-grid turbulence scheme depends on the grid length. For the 1.5 km simulations, updraughts were weakened though their horizontal scale remained largely unchanged. Progressively more so for the sub-kilometre grid lengths, updraughts were broadened and intensified; horizontal scale was now determined by the mixing length rather than the grid length. In general, simulated updraughts were found to weaken too quickly with height. The findings were supported by the analysis of the widths of reflectivity patterns in both the simulations and observations.
Resumo:
Weather is frequently used in music to frame events and emotions, yet quantitative analyses are rare. From a collated base set of 759 weather-related songs, 419 were analysed based on listings from a karaoke database. This article analyses the 20 weather types described, frequency of occurrence, genre, keys, mimicry, lyrics and songwriters. Vocals were the principal means of communicating weather: sunshine was the most common, followed by rain, with weather depictions linked to the emotions of the song. Bob Dylan, John Lennon and Paul McCartney wrote the most weather-related songs, partly following their experiences at the time of writing.