992 resultados para Knock-out mouse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME L'infiltration tissulaire par les cellules leucémiques, responsable de leucostase, est une complication grave de la leucémie aiguë hyperleucocytaire. Elle peut entraîner une détresse respiratoire et des troubles neurologiques de mauvais pronostic. Pendant longtemps, la prolifération intravasculaire des cellules leucémiques et l'augmentation de la viscosité étaient considérées comme en étant responsables, et le traitement reposait sur une cytoréduction rapide par leucaphérèse. Actuellement, l'interaction entre les cellules leucémiques et l'endothélium vasculaire est plutôt considérée comme la cause de ce phénomène. En effet, les cellules leucémiques peuvent induire l'expression des sélectives endothéliales. Les sélectives initient le roulement des leucocytes avant leur adhésion ferme et leur migration dans les tissus. Elles reconnaissent des ligands spécifiques exprimés à la surface des leucocytes, comme PSGL-1 qui est un ligand commun des sélectives. Cependant, plusieurs études suggèrent que d'autres ligands de la E-sélective soient exprimés par les leucocytes. L'interaction des cellules leucémiques avec la E- et la P- sélective est corrélée avec l'expression de la molécule CLA, reconnue par l'anticorps HECA-452. L'immunopurification des ligands de la E-sélective avec cet anticorps a permis d'isoler, des cellules THP1 et U937, une protéine de 170 kDa, ainsi qu'une autre protéine de 250 kDa des cellules U937, en plus de PSGL-1. Ces protéines ont également été purifiées avec la protéine de fusion Esélective/IgM. CD43 et CD44 semblent être des ligands de la E-sélective sur certaines lignées, mais leur interaction avec la E-sélective n'est pas toujours retrouvée. De plus, cette étude a permis de montrer que ces ligands de la E-sélectiné sont exprimés dans les rafts lipidiques, comme PSGL-1 et la L-sélective des neutrophiles. Ces deux nouveaux ligands sont en cours d'identification. Ils pourraient représenter une nouvelle cible dans le traitement de la leucostase, mais aussi lors d'inflammation chronique ou de métastases. ABSTRACT Leukostasis is alife-threatening complication of acute leukemia, that results from tissue infiltration of leukemic blasts that migrate out of blood flow and interfere with normal tissue functions. The process leading to these complications has been attributed to the overcrowding of leukemic cells in the microcirculation. However, leukostasis more likely results from the adhesive interactions between leukemic blasts and the endothelium. Activated endothelium express adhesion molecules like P- and E-selectin, and leukemic cells themselves can induce the expression of E-selectin on endothelial cells. Selectins are essential in initiating the rolling of intravascular cells on endothelium before firm adhesion and transmigration outside of blood vessels. They interact with specific ligands on leukocyte cell surface. P-selectin glycoprotein ligand-1 (PSGL-1) is common ligand for E-, P- and L-selectin. Recently, CD44, ESL-1 and CD44 were shown to cooperate. ìn supporting mouse neutrophil adhesion to E-selectin. Other E-selectin ligands remain to be identified in humans. Leukemic cells were screened in order to characterize human E-selectin ligands. The interactions of E- and P-selectin correlate with the expression of CLA epitope. Therefore, HECA-452 mAb that recognizes CLA was used for immunopurification. Aglycoprotein of 170 kDa was purified from THP1 and U937 cells, and a protein of 250 kDa from U937 cells. These proteins were also purified by affinity binding to E-selectin/IgM chimera. PSGL-1 bound to E-selectin as expected, but CD43 and CD44 were not always adsorbed on E-selectin chimera, depending on cell types. E-selectin ligands were also shown to be in lipid rafts in leukemic cells, like PSGL-1 and L-selectin in human neutrophils. The 170 kDa protein has been sequenced, and three interesting ligands were among the candidates: ESL-1, CD44 and podocalyxin. These ligands are under investigation, and may represent a new therapeutic target in leukostasis, inflammation or cancer metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identity of minor lymphocytes stimulating (Mls) antigens, endogenous superantigens that can activate, or induce the deletion of, large portions of the T-cell repertoire, has recently been revealed: they are encoded by mouse mammary tumor viruses (MMTV) that have integrated into the germ line as DNA proviruses. As Hans Acha-Orbea and Ed Palmer point out, Mls-mediated modulation may be only the tip of the retrovirus iceberg; already murine leukemia virus (MuLV), with similar superantigen properties, has been discovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PPARbeta is expressed in the mouse epidermis during fetal development, and progressively disappears from the interfollicular epidermis after birth. Interestingly, its expression is strongly reactivated in the adult epidermis in conditions where keratinocyte proliferation is induced and during wound healing. Data obtained on PPARbeta heterozygous mice reveal that PPARbeta is implicated in the control of keratinocyte proliferation and is necessary for rapid healing of a skin wound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the preparation of the modified chelator aminooxyacetyl-ferrioxamine, and the replacement of its iron atom by 67Ga at high specific activity. The aminooxy function of this compound was allowed to react with the aldehyde groups generated by the periodate oxidation of the oligosaccharide of a mouse IgG1 monoclonal antibody (MAb) directed against carcino-embryonic antigen (CEA). The use of the aminooxy group allowed a stable bond to be formed between the chelon and the antibody with no need for reduction. Iron was removed from the ferrioxamine moiety and replaced by 67Ga either before or after conjugation of the chelon to the antibody. In either case the labelled antibody was injected into nude mice bearing a human colon carcinoma having the appropriate antigenicity. Unoxidized antibody, labelled with 125I by conventional methods, was co-injected as an internal control. Additional control experiments were carried out with a non-immune IgG using the same 67Ga-labelled modified chelon as above. The in vivo distribution of the modified antibodies was evaluated at various times between 24 and 96 hr after injection. The methods used were gamma-camera imaging and, more quantitatively, gamma-counting of the various organs after dissection. Interestingly, with the metal-chelon-labelled antibody, the intensity and specificity of tumor labelling was comparable and in some cases superior to the results obtained with radio-iodinated antibody. In particular, there was almost no increase in liver and spleen uptake of radioactive metal relative to radio-iodine, contrary to what has been observed with most antibodies labelled with 111In after conjugation with DTPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer's patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c(+)CD11b(+)CD8(-) dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C57BL/6 mice are the most widely used strain of laboratory mice. Using in vivo proton Magnetic Resonance Spectroscopy ((1)H MRS), we have repeatedly observed an abnormal neurochemical profile in the brains of both wild-type and genetically modified mice derived from the C57BL/6J strain, consisting of a several fold increase in cerebral glutamine and two fold decrease in myo-inositol. This strikingly abnormal neurochemical "phenotype" resembles that observed in chronic liver disease or portosystemic shunting and appeared to be independent of transgene, origin or chow and was not associated with liver failure. As many as 25% of animals displayed the abnormal neurochemical profile, questioning the reliability of this model for neurobiology. We conducted an independent study to determine if this neurochemical profile was associated with portosystemic shunting. Our results showed that 100% of the mice with high brain glutamine displayed portosystemic shunting by concomitant portal angiography while all mice with normal brain glutamine did not. Since portosystemic shunting is known to cause alterations in gene expression in many organs including the brain, we conclude that portosystemic shunting may be the most significant problem associated with C57BL/6J inbreeding both for its effect on the central nervous system and for its systemic repercussions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCT2 is the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate. It is suggested that MCT2 is upregulated to meet enhanced energy demands after modifications in synaptic transmission. Brain-derived neurotrophic factor (BDNF), a promoter of synaptic plasticity, significantly increased MCT2 protein expression in cultured cortical neurons (as shown by immunocytochemistry and western blot) through a translational regulation at the synaptic level. Brain-derived neurotrophic factor can cause translational activation through different signaling pathways. Western blot analyses showed that p44/p42 mitogen-activated protein kinase (MAPK), Akt, and S6 were strongly phosphorylated on BDNF treatment. To determine by which signal transduction pathway(s) BDNF mediates its upregulation of MCT2 protein expression, the effect of specific inhibitors for p38 MAPK, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), p44/p42 MAPK (ERK), and Janus kinase 2 (JAK2) was evaluated. It could be observed that the BDNF-induced increase in MCT2 protein expression was almost completely blocked by all inhibitors, except for JAK2. These data indicate that BDNF induces an increase in neuronal MCT2 protein expression by a mechanism involving a concomitant stimulation of PI3K/Akt/mTOR/S6, p38 MAPK, and p44/p42 MAPK. Moreover, our observations suggest that changes in MCT2 expression could participate in the process of synaptic plasticity induced by BDNF.