893 resultados para Kernel Density
Resumo:
In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.
Resumo:
Low-density polyethylene was mixed with dextrin having different particle sizes (100, 200 and 300 mesh). Various compositions were prepared and their mechanical properties were evaluated and thermal studies have been carried out. Biodegradability of these samples has been checked using liquid culture medium containing Vibrios (an amylase producing bacteria), which were isolated from marine benthic environment. Soil burial test was done and reprocessability of these samples was evaluated. The results indicate that the newly prepared blends are reprocessable without sacrificing much of their mechanical properties. The biodegradability tests on these blends indicate that these are partially biodegradable
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two. Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination
Resumo:
This paper presents the results of a study on the use of rice husk ash (RHA) for property modification of high density polyethylene (HDPE). Rice husk is a waste product of the rice processing industry. It is used widely as a fuel which results in large quantities of RHA. Here, the characterization of RHA has been done with the help of X-ray diffraction (XRD), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), light scattering based particle size analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Most reports suggest that RHA when blended directly with polymers without polar groups does not improve the properties of the polymer substantially. In this study RHA is blended with HDPE in the presence of a compatibilizer. The compatibilized HDPE-RHA blend has a tensile strength about 18% higher than that of virgin HDPE. The elongation-at-break is also higher for the compatibilized blend. TGA studies reveal that uncompatibilized as well as compatibilized HDPERHA composites have excellent thermal stability. The results prove that RHA is a valuable reinforcing material for HDPE and the environmental pollution arising from RHA can be eliminated in a profitable way by this technique.
Resumo:
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product
Resumo:
Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.
Resumo:
The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
Ricinodendron heudelotii (Baill.) Pierre ex Pax. kernel (njansang) commercialization has been promoted by the World Agroforestry Centre (ICRAF) in project villages in Cameroon with the aim to alleviate poverty for small-scale farmers. We evaluated to what extent development interventions improved the financial situation of households by comparing project and control households. The financial importance of njansang to household livelihoods between 2005 and 2010 was investigated through semi-structured questionnaires with retrospective questions, focus group discussions, interviews and wealth-ranking exercises. The importance of njansang increased strongly in the entire study region and the increase was significantly larger in project households. Moreover, absolute numbers of income from njansang commercialization as well as relative importance of njansang in total cash income, increased significantly more in project households (p < 0.05). Although the lower wealth class households could increase their income through njansang trade, the upper wealth class households benefited more from the projects' interventions. Group sales as conducted in project villages did not lead to significantly higher prices and should be reconsidered. Hence, promotion of njansang had a positive effect on total cash income and can still be improved. The corporative actors for njansang commercialization are encouraged to adapt their strategies to ensure that also the lower wealth class households benefit from the conducted project interventions. In this respect, frequent project monitoring and impact analysis are important tools to accomplish this adaptation.
Resumo:
In dieser Doktorarbeit wird eine akkurate Methode zur Bestimmung von Grundzustandseigenschaften stark korrelierter Elektronen im Rahmen von Gittermodellen entwickelt und angewandt. In der Dichtematrix-Funktional-Theorie (LDFT, vom englischen lattice density functional theory) ist die Ein-Teilchen-Dichtematrix γ die fundamentale Variable. Auf der Basis eines verallgemeinerten Hohenberg-Kohn-Theorems ergibt sich die Grundzustandsenergie Egs[γgs] = min° E[γ] durch die Minimierung des Energiefunktionals E[γ] bezüglich aller physikalischer bzw. repräsentativer γ. Das Energiefunktional kann in zwei Beiträge aufgeteilt werden: Das Funktional der kinetischen Energie T[γ], dessen lineare Abhängigkeit von γ genau bekannt ist, und das Funktional der Korrelationsenergie W[γ], dessen Abhängigkeit von γ nicht explizit bekannt ist. Das Auffinden präziser Näherungen für W[γ] stellt die tatsächliche Herausforderung dieser These dar. Einem Teil dieser Arbeit liegen vorausgegangene Studien zu Grunde, in denen eine Näherung des Funktionals W[γ] für das Hubbardmodell, basierend auf Skalierungshypothesen und exakten analytischen Ergebnissen für das Dimer, hergeleitet wird. Jedoch ist dieser Ansatz begrenzt auf spin-unabhängige und homogene Systeme. Um den Anwendungsbereich von LDFT zu erweitern, entwickeln wir drei verschiedene Ansätze zur Herleitung von W[γ], die das Studium von Systemen mit gebrochener Symmetrie ermöglichen. Zuerst wird das bisherige Skalierungsfunktional erweitert auf Systeme mit Ladungstransfer. Eine systematische Untersuchung der Abhängigkeit des Funktionals W[γ] von der Ladungsverteilung ergibt ähnliche Skalierungseigenschaften wie für den homogenen Fall. Daraufhin wird eine Erweiterung auf das Hubbardmodell auf bipartiten Gittern hergeleitet und an sowohl endlichen als auch unendlichen Systemen mit repulsiver und attraktiver Wechselwirkung angewandt. Die hohe Genauigkeit dieses Funktionals wird aufgezeigt. Es erweist sich jedoch als schwierig, diesen Ansatz auf komplexere Systeme zu übertragen, da bei der Berechnung von W[γ] das System als ganzes betrachtet wird. Um dieses Problem zu bewältigen, leiten wir eine weitere Näherung basierend auf lokalen Skalierungseigenschaften her. Dieses Funktional ist lokal bezüglich der Gitterplätze formuliert und ist daher anwendbar auf jede Art von geordneten oder ungeordneten Hamiltonoperatoren mit lokalen Wechselwirkungen. Als Anwendungen untersuchen wir den Metall-Isolator-Übergang sowohl im ionischen Hubbardmodell in einer und zwei Dimensionen als auch in eindimensionalen Hubbardketten mit nächsten und übernächsten Nachbarn. Schließlich entwickeln wir ein numerisches Verfahren zur Berechnung von W[γ], basierend auf exakten Diagonalisierungen eines effektiven Vielteilchen-Hamilton-Operators, welcher einen von einem effektiven Medium umgebenen Cluster beschreibt. Dieser effektive Hamiltonoperator hängt von der Dichtematrix γ ab und erlaubt die Herleitung von Näherungen an W[γ], dessen Qualität sich systematisch mit steigender Clustergröße verbessert. Die Formulierung ist spinabhängig und ermöglicht eine direkte Verallgemeinerung auf korrelierte Systeme mit mehreren Orbitalen, wie zum Beispiel auf den spd-Hamilton-Operator. Darüber hinaus berücksichtigt sie die Effekte kurzreichweitiger Ladungs- und Spinfluktuationen in dem Funktional. Für das Hubbardmodell wird die Genauigkeit der Methode durch Vergleich mit Bethe-Ansatz-Resultaten (1D) und Quanten-Monte-Carlo-Simulationen (2D) veranschaulicht. Zum Abschluss wird ein Ausblick auf relevante zukünftige Entwicklungen dieser Theorie gegeben.
Resumo:
We present distribution independent bounds on the generalization misclassification performance of a family of kernel classifiers with margin. Support Vector Machine classifiers (SVM) stem out of this class of machines. The bounds are derived through computations of the $V_gamma$ dimension of a family of loss functions where the SVM one belongs to. Bounds that use functions of margin distributions (i.e. functions of the slack variables of SVM) are derived.
Resumo:
This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.
Resumo:
We formulate density estimation as an inverse operator problem. We then use convergence results of empirical distribution functions to true distribution functions to develop an algorithm for multivariate density estimation. The algorithm is based upon a Support Vector Machine (SVM) approach to solving inverse operator problems. The algorithm is implemented and tested on simulated data from different distributions and different dimensionalities, gaussians and laplacians in $R^2$ and $R^{12}$. A comparison in performance is made with Gaussian Mixture Models (GMMs). Our algorithm does as well or better than the GMMs for the simulations tested and has the added advantage of being automated with respect to parameters.
Resumo:
This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.