922 resultados para Juta fibers
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
In this study, the macro steel fiber (SF), carbon fiber (CF) and nano carbon black (NCB) as triphasic conductive materials were added into concrete, in order to improve the conductivity and ductility of concrete. The influence of NCB, SF and CF on the post crack behavior and conductivity of concrete was explored. The effect of the triphasic conductive materials on the self-diagnosing ability to the load–deflection property and crack widening of conductive concrete member subjected to bending were investigated. The relationship between the fractional change in surface impedance (FCR) and the crack opening displacement (COD) of concrete beams with conductive materials has been established. The results illustrated that there is a linear relationship between COD and FCR.
Resumo:
Silk fibroin is a commonly available natural biopolymer produced in specialized glands of arthropods, such as silkworms or spiders, scorpions, mites, bees and flies. This biopolymer has a long history of use in textile production and also as sutures or treatment of skin wounds. Silk fibroin has been increasingly explored in other areas of biomedical science where we can find a higher morphological diversification of silk biomaterials like films, electrospun fibers, 3D porous scaffolds or nanoparticles. In recent years it has been demonstrated that fibroin is an excellent material for active components in optical devices. This new application opens the way towards the development of multifunctional optoelectronic devices, which in perspective can be made fully biocompatible and eventually bioresorbable. Moreover, fibroin can be added to other biocomponents in order to modify the biomaterial properties leading to optimized and total different functions. These improvements can go from higher cell adhesion in tissue engineering or enhanced optical transparency, smoothness or flexibility in optoelectronic devices. The tuning and completely understanding of silk fibers physicochemical properties and interaction with other elements are of crucial importance for the improvement of already existent silk-based materials and the basis for the development of new products.
Resumo:
Silk fibroin (SF) is a commonly available natural biopolymer produced in specialized glands of arthropods, with a long history of use in textile production and also in health cares. The exceptional intrinsic properties of these fibers, such as self-assembly, machinability, biocompatibility, biodegradation or non-toxicity, offer a wide range of exciting opportunities [1]. It has long been recognized that silk can be a rich source of inspiration for designing new materials with tailored properties, enhanced performance and high added value for targeted applications, opening exciting new prospects in the domain of materials science and related technological fields, including bio-friendly integration, miniaturization and multifunctionalization. In recent years it has been demonstrated that fibroin is an excellent material for active components in optics and photonics devices. Progress in new technological fields such as optics, photonics and electronics are emerging [2,3]. The incorporation of polymer electrolytes as components of various devices (advanced batteries, smart windows, displays and supercapacitors) offers significant advantages with respect to traditional electrolytes, including enhanced reliability and improved safety. SF films are particularly attractive in this context. They have near-perfect transparency across the VIS range, surface flatness (together with outstanding mechanical robustness), ability to replicate patterned substrates and their thickness may be easily tailored from a few nanometers to hundreds of micrometers through spin-casting of a silk solution into subtract. Moreover, fibroin can be added to other biocomponents or salts in order to modify the biomaterial properties leading to optimized and total different functions. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating SF films doped with lithium triflate and lithium tetrafluoroborate (LiTFSI and LiBF4, respectively) as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging. Aiming to evaluate the performance of the ion conducting SF membranes doped with LiTFSI and LiBF4 (SF-Li), small ECDs with glass/ITO/WO3/SF-Li/CeO2-TiO2/ITO/glass configuration were assembled and characterized. The device exhibited, after 4500 cycles, the insertion of charge at -3.0 V reached –1.1 mC.cm-2 in 15 s. After 4500 cycles the window glass-staining, glass/ITO/WO3/Fibrin-Li salts electrolyte/CeO2-TiO2/ITO/glass configuration was reversible and featured a T 8 % at λ = 686 nm
Resumo:
Current societal challenges increasingly demand the need to seek for efficient and sustainable solutions to daily problems. Construction, as a result of its activity, is one of the main responsible industry for the exploitation of resources and greenhouse gas emissions. In this way, several research works are being undertaken to change some of the current practices. This paper presents the work being done at University of Minho to study de degradation of natural fibers when used as a sustainable solution for soil reinforcement. Jute and sisal fibrous structures (0º/90º) were studied in terms of their degradation over time, when incorporated into soil and when subject to accelerated aging tests in a QUV weathering test equipment. Results show that the process of biodegradation of natural fibers is clearly accelerated by the action of temperature, moisture and solar radiation, explaining further degradation of jute and sisal fibers when exposed to these factors, although more pronounced in jute fabric structures.
Resumo:
Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.
Resumo:
Among the various possible embodiements of Advanced Therapies and in particular of Tissue Engineering the use of temporary scaffolds to regenerate tissue defects is one of the key issues. The scaffolds should be specifically designed to create environments that promote tissue development and not merely to support the maintenance of communities of cells. To achieve that goal, highly functional scaffolds may combine specific morphologies and surface chemistry with the local release of bioactive agents. Many biomaterials have been proposed to produce scaffolds aiming the regeneration of a wealth of human tissues. We have a particular interest in developing systems based in nanofibrous biodegradable polymers1,2. Those demanding applications require a combination of mechanical properties, processability, cell-friendly surfaces and tunable biodegradability that need to be tailored for the specific application envisioned. Those biomaterials are usually processed by different routes into devices with wide range of morphologies such as biodegradable fibers and meshes, films or particles and adaptable to different biomedical applications. In our approach, we combine the temporary scaffolds populated with therapeutically relevant communities of cells to generate a hybrid implant. For that we have explored different sources of adult and also embryonic stem cells. We are exploring the use of adult MSCs3, namely obtained from the bone marrow for the development autologous-based therapies. We also develop strategies based in extra-embryonic tissues, such as amniotic fluid (AF) and the perivascular region of the umbilical cord4 (Whartonâ s Jelly, WJ). Those tissues offer many advantages over both embryonic and other adult stem cell sourcess. These tissues are frequently discarded at parturition and its extracorporeal nature facilitates tissue donation by the patients. The comparatively large volume of tissue and ease of physical manipulation facilitates the isolation of larger numbers of stem cells. The fetal stem cells appear to have more pronounced immunomodulatory properties than adult MSCs. This allogeneic escape mechanism may be of therapeutic value, because the transplantation of readily available allogeneic human MSCs would be preferable as opposed to the required expansion stage (involving both time and logistic effort) of autologous cells. Topics to be covered: This talk will review our latest developments of nanostructured-based biomaterials and scaffolds in combination with stem cells for bone and cartilage tissue engineering.
Resumo:
Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM). The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.
Resumo:
Projeto de Investigação integrado de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Dissertação de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Tese de Doutoramento em Ciências da Saúde.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
OBJECTIVE: To assess the effect of food restriction (FR) on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR). METHODS: Isolated papillary muscle preparations of the left ventricle (LV) of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY) rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet) for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1) reduction in the body weight and LV weight of SHR and WKY rats; 2) increase in the time to peak shortening and the time to peak developed tension (DT) in the hypertrophied myocardium of the SHR; 3) diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.