996 resultados para JD-R Model
Resumo:
Urban flood inundation models require considerable data for their parameterisation, calibration and validation. TerraSAR-X should be suitable for urban flood detection because of its high resolution in stripmap/spotlight modes. The paper describes ongoing work on a project to assess how well TerraSAR-X can detect flooded regions in urban areas, and how well these can constrain the parameters of an urban flood model. The study uses a TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK , in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with LiDAR data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and vegetation. An algorithm for the delineation of flood water in urban areas is described, together with its validation using the aerial photographs.
Resumo:
FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.
North Atlantic weather regimes response to Indian-western Pacific Ocean warming: A multi-model study
Resumo:
Resumo:
There are at least three distinct time scales that are relevant for the evolution of atmospheric convection. These are the time scale of the forcing mechanism, the time scale governing the response to a steady forcing, and the time scale of the response to variations in the forcing. The last of these, tmem, is associated with convective life cycles, which provide an element of memory in the system. A highly simplified model of convection is introduced, which allows for investigation of the character of convection as a function of the three time scales. For short tmem, the convective response is strongly tied to the forcing as in conventional equilibrium parameterization. For long tmem, the convection responds only to the slowly evolving component of forcing, and any fluctuations in the forcing are essentially suppressed. At intermediate tmem, convection becomes less predictable: conventional equilibrium closure breaks down and current levels of convection modify the subsequent response.
Resumo:
Data assimilation is a sophisticated mathematical technique for combining observational data with model predictions to produce state and parameter estimates that most accurately approximate the current and future states of the true system. The technique is commonly used in atmospheric and oceanic modelling, combining empirical observations with model predictions to produce more accurate and well-calibrated forecasts. Here, we consider a novel application within a coastal environment and describe how the method can also be used to deliver improved estimates of uncertain morphodynamic model parameters. This is achieved using a technique known as state augmentation. Earlier applications of state augmentation have typically employed the 4D-Var, Kalman filter or ensemble Kalman filter assimilation schemes. Our new method is based on a computationally inexpensive 3D-Var scheme, where the specification of the error covariance matrices is crucial for success. A simple 1D model of bed-form propagation is used to demonstrate the method. The scheme is capable of recovering near-perfect parameter values and, therefore, improves the capability of our model to predict future bathymetry. Such positive results suggest the potential for application to more complex morphodynamic models.
Resumo:
We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stochastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS (GEWEX Cloud System Study) community, simulating transitions between active and suppressed periods of tropical convection.
Resumo:
The ability of climate models to reproduce and predict land surface anomalies is an important but little-studied topic. In this study, an atmosphere and ocean assimilation scheme is used to determine whether HadCM3 can reproduce and predict snow water equivalent and soil moisture during the 1997–1998 El Nino Southern Oscillation event. Soil moisture is reproduced more successfully, though both snow and soil moisture show some predictability at 1- and 4-month lead times. This result suggests that land surface anomalies may be reasonably well initialized for climate model predictions and hydrological applications using atmospheric assimilation methods over a period of time.