962 resultados para Ischnura elegans
Resumo:
Ecological network analysis (ENA) was used to study the effects of Pomatoschistus microps on energy transport through the food web, its impact on other compartments and its possible role as a keystone species in the trophic webs of an Arenicola tidal flat ecosystem and a sparse Zostera noltii bed ecosystem. Three ENA models were constructed: (a) model 1 contains data of the original food web from prior research in the investigated area by Baird et al. (2007), (b) an updated model 2 which included biomass and diet data of P. microps from recent sampling, and (c) model 3 simulating a food web without P. microps. A comparison of energy transport between the different models revealed that more energy is transported from lower trophic levels up the food chain, in the presence of P. microps (models 1 and 2) than in its absence (model 3). Calculations of the keystone index (KSi) revealed the high overall impact (measured as eps_i) of this fish species on food webs. In model 1, P. microps was assigned a low KSi in the Arenicola flat and in the sparse Z. noltii bed. Calculations in model 2 ranked P. microps first for keystoneness and eps_i in both communities, the Arenicola flat and the sparse Z. noltii bed. Taken together, our results give insight into the role of P. microps when considering a whole food web and reveal direct and indirect trophic interactions of this small-sized fish species. These results might illustrate the impact and importance of abundant, widespread species in food webs and facilitate further investigations.