878 resultados para Intervertebral disc degeneration
Resumo:
PURPOSE To assess intra- and subretinal fluid during the loading phase with intravitreal ranibizumab in exudative age-related macular degeneration and to quantify the accuracy of crosshair scan spectral-domain optical coherence tomography with regard to retinal fluid. METHODS This is a retrospective study of 31 treatment-naive patients who received 3 monthly intravitreal ranibizumab injections. Visual acuity and the presence of retinal fluid were assessed at each visit using volume and crosshair scan protocols. RESULTS Visual acuity improved and central retinal thickness decreased significantly during the loading phase. However, retinal fluid persisted in two thirds of the patients. The accuracy of the crosshair scan to detect fluid was 93%. CONCLUSIONS A substantial proportion of eyes had persistent fluid after 3 months of ranibizumab injections. However, visual improvement was independent of residual fluid. Message: Crosshair scans detect relevant collections of retinal fluid accurately and may be sufficient in daily clinical practice. © 2015 S. Karger AG, Basel.
Resumo:
Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.
Resumo:
PURPOSE: To identify programmed cell death (PCD) pathways involved in N-methyl-N-nitrosourea (MNU)-induced photoreceptor (PR) degeneration. METHODS: Adult C57BL/6 mice received a single MNU i.p. injection (60 mg/kg bodyweight), and were observed over a period of 7 days. Degeneration was visualized by H&E overview staining and electron microscopy. PR cell death was measured by quantifying TUNEL-positive cells in the outer nuclear layer (ONL). Activity measurements of key PCD enzymes (calpain, caspases) were used to identify the involved cell death pathways. Furthermore, the expression level of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), key players in endoplasmic reticulum (ER) stress-induced apoptosis, was analyzed using quantitative real-time PCR. RESULTS: A decrease in ONL thickness and the appearance of apoptotic PR nuclei could be detected beginning 3 days post-injection (PI). This was accompanied by an increase of TUNEL-positive cells. Significant upregulation of activated caspases (3, 9, 12) was found at different time periods after MNU injection. Additionally, several other players of nonconventional PCD pathways were also upregulated. Consequently, calpain activity increased in the ONL, with a maximum on day 7 PI and an upregulation of CHOP and GRP78 expression beginning on day 1 PI was found. CONCLUSIONS: The data indicate that regular apoptosis is the major cause of MNU-induced PR cell death. However, alternative PCD pathways, including ER stress and calpain activation, are also involved. Knowledge about the mechanisms involved in this mouse model of PR degeneration could facilitate the design of putative combinatory therapeutic approaches.
Resumo:
PURPOSE To determine the safety and efficacy of AL-8309B (tandospirone) in the management of patients with geographic atrophy (GA) secondary to age-related macular degeneration (AMD) and obtain standardized data on GA lesion growth progression. DESIGN Prospective, controlled, double-masked, randomized, multicenter phase 3 clinical trial. METHODS Setting: 48 clinical sites. PATIENTS Patients with GA associated with AMD were enrolled. All patients were followed for a minimum of 30 months, and up to 36 months. Intervention Procedures: Patients were randomized (1:1:1) to receive AL-8309B ophthalmic solution 1.0%, 1.75%, or vehicle, administered as a twice-daily topical ocular drop. MAIN OUTCOME MEASURES The primary efficacy endpoint was mean annualized lesion enlargement from baseline as assessed with fundus autofluorescence (FAF) imaging. RESULTS A total of 768 eyes of 768 patients were enrolled and treated with AL-8309B 1.0% (N=250), AL-8309B 1.75% (N=258), or vehicle (N= 260). An increase in mean lesion size was observed in both the AL-8309B and vehicle treatment groups, and growth rates were similar in all treatment groups. Annualized lesion growth rates were 1.73, 1.76 and 1.71 mm(2) for AL-8309B 1.0%, AL-8309B 1.75%, and vehicle, respectively. CONCLUSIONS AL-8309B 1.0% and 1.75% did not affect lesion growth in eyes with GA secondary to AMD. There were no clinically relevant safety issues identified for AL-8309B. The large natural history dataset from this study is a valuable repository for future comparisons.
Resumo:
PURPOSE To assess the effect of a bimonthly treatment regimen with intravitreal aflibercept on retinal fluid and pigment epithelial detachment (PED) in patients with neovascular age-related macular degeneration (AMD). METHODS Twenty-six treatment-naive eyes of 26 patients with choroidal neovascularisation secondary to AMD were included. The patients received three initial monthly (mean 30 days) intravitreal injections of aflibercept followed by a bimonthly (mean 62 days) fixed regimen for a total of 1 year. Best-corrected visual acuity (BCVA) and optical coherence tomography (OCT) measurements were recorded at monthly intervals. In addition, the presence of intraretinal fluid (IRF) or subretinal fluid (SRF) or a combination of both as well as serous and fibrovascular PEDs were assessed. RESULTS The mean patient age was 80 years (range 54-93). There were 14 male and 12 female patients. The mean gain in BCVA at 1 year was 9.3 letters (SEM ±3) with a mean reduction of the central retinal thickness of 154 µm (SEM ±50). After 3 monthly injections of aflibercept, there was resolution of IRF and SRF in 80% of the treated eyes; the amount of fluid increased at months 4, 6 and 8 with troughs in between. Whereas fibrovascular PEDs remained stable after the loading phase, serous PEDs displayed a seesaw pattern. Patients without retinal pigment epithelium (RPE) atrophy at the end of the 1-year period had significantly better BCVA compared to patients with RPE atrophy (p = 0.03). CONCLUSION Despite significant overall BCVA gain, bimonthly intervals seem insufficient to maintain the morphological improvements after the initial loading dose with intravitreal aflibercept.
Resumo:
Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. Statement of significance Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.
Resumo:
Arthroscopic treatment of hallux rigidus is appropriate after failed nonoperative treatment. Debridement with cheilectomy, and fusion are the main indications for arthroscopic treatment of hallux rigidus. If the cartilage damage is extensive and the patient has consented, then a fusion is performed at the same sitting.
Resumo:
PURPOSE Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. METHODS We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. RESULTS We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. CONCLUSIONS Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
Resumo:
OBJECTIVE To determine the biomechanical effect of an intervertebral spacer on construct stiffness in a PVC model and cadaveric canine cervical vertebral columns stabilized with monocortical screws/polymethylmethacrylate (PMMA). STUDY DESIGN Biomechanical study. SAMPLE POPULATION PVC pipe; cadaveric canine vertebral columns. METHODS PVC model-PVC pipe was used to create a gap model mimicking vertebral endplate orientation and disk space width of large-breed canine cervical vertebrae; 6 models had a 4-mm gap with no spacer (PVC group 1); 6 had a PVC pipe ring spacer filling the gap (PCV group 2). Animals-large breed cadaveric canine cervical vertebral columns (C2-C7) from skeletally mature dogs without (cadaveric group 1, n = 6, historical data) and with an intervertebral disk spacer (cadaveric group 2, n = 6) were used. All PVC models and cadaver specimens were instrumented with monocortical titanium screws/PMMA. Stiffness of the 2 PVC groups was compared in extension, flexion, and lateral bending using non-destructive 4-point bend testing. Stiffness testing in all 3 directions was performed of the unaltered C4-C5 vertebral motion unit in cadaveric spines and repeated after placement of an intervertebral cortical allograft ring and instrumentation. Data were compared using a linear mixed model approach that also incorporated data from previously tested spines with the same screw/PMMA construct but without disk spacer (cadaveric group 1). RESULTS Addition of a spacer increased construct stiffness in both the PVC model (P < .001) and cadaveric vertebral columns (P < .001) compared to fixation without a spacer. CONCLUSIONS Addition of an intervertebral spacer significantly increased construct stiffness of monocortical screw/PMMA fixation.
Resumo:
OBJECTIVE To report findings and outcomes of dogs with reherniation of nuclear material within 7 days of hemilaminectomy for acute thoracolumbar (TL) intervertebral disk extrusion. STUDY DESIGN Retrospective case series. ANIMALS Chondrodystrophic dogs (n = 11). METHODS Dogs with acute neurologic decline within 1 week of surgical decompression for TL disk extrusion were identified. Advanced imaging was used to document extradural spinal cord compression at the previous surgery site. Ten dogs had a 2nd decompressive surgery to remove extruded nuclear material. RESULTS All dogs had acute neurologic deterioration (average, 2 neurologic grades) 2-7 days after initial hemilaminectomy. Computed tomography (CT; n = 10) or myelography (n = 1) documented extradural spinal cord compression compatible with extruded disk material at the previous hemilaminectomy site. Dogs that had a 2nd surgical decompression improved neurologically within 24 hours and were paraparetic at discharge. The single dog that did not have decompressive surgery did not regain deep nociception during 185-day follow-up. CONCLUSIONS Early reherniation at the site of previous hemilaminectomy can produce acute deterioration of neurologic function and should be investigated with diagnostic imaging. Repeat decompressive surgery can lead to functional recovery.
Resumo:
OBJECTIVE To determine the success of medical management of presumptive cervical disk herniation in dogs and variables associated with treatment outcome. DESIGN Retrospective case series. ANIMALS Dogs (n=88) with presumptive cervical disk herniation. METHODS Dogs with presumptive cervical and thoracolumbar disk herniation were identified from medical records at 2 clinics and clients were mailed a questionnaire related to the success of therapy, clinical recurrence of signs, and quality of life (QOL) as interpreted by the owner. Signalment, duration and degree of neurologic dysfunction, and medication administration were determined from medical records. RESULTS Ninety-seven percent of dogs (84/87) with complete information were described as ambulatory at initial evaluation. Successful treatment was reported for 48.9% of dogs with 33% having recurrence of clinical signs and 18.1% having therapeutic failure. Bivariable logistic regression showed that non-steroidal anti-inflammatory drug (NSAID) administration was associated with success (P=.035; odds ratio [OR]=2.52). Duration of cage rest and glucocorticoid administration were not significantly associated with success or QOL. Dogs with less-severe neurologic dysfunction were more likely to have a successful outcome (OR=2.56), but this association was not significant (P=.051). CONCLUSIONS Medical management can lead to an acceptable outcome in many dogs with presumptive cervical disk herniation. Based on these data, NSAIDs should be considered as part of the therapeutic regimen. Cage rest duration and glucocorticoid administration do not appear to benefit these dogs, but this should be interpreted cautiously because of the retrospective data collection and use of client self-administered questionnaire follow-up. CLINICAL RELEVANCE These results provide insight into the success of medical management for presumptive cervical disk herniation in dogs and may allow for refinement of treatment protocols.
Resumo:
OBJECTIVE To determine the success of medical management of presumptive thoracolumbar disk herniation in dogs and the variables associated with treatment outcome. STUDY DESIGN Retrospective case series. ANIMALS Dogs (n=223) with presumptive thoracolumbar disk herniation. METHODS Medical records from 2 clinics were used to identify affected dogs, and owners were mailed a questionnaire about success of therapy, recurrence of clinical signs, and quality of life (QOL) as interpreted by the owner. Signalment, duration and degree of neurologic dysfunction, and medication administration were determined from medical records. RESULTS Eighty-three percent of dogs (185/223) were ambulatory at initial evaluation. Successful treatment was reported for 54.7% of dogs, with 30.9% having recurrence of clinical signs and 14.4% classified as therapeutic failures. From bivariable logistic regression, glucocorticoid administration was negatively associated with success (P=.008; odds ratio [OR]=.48) and QOL scores (P=.004; OR=.48). The duration of cage rest was not significantly associated with success or QOL. Nonambulatory dogs were more likely to have lower QOL scores (P=.01; OR=2.34). CONCLUSIONS Medical management can lead to an acceptable outcome in many dogs with presumptive thoracolumbar disk herniation. Cage rest duration does not seem to affect outcome and glucocorticoids may negatively impact success and QOL. The conclusions in this report should be interpreted cautiously because of the retrospective data collection and the use of client self-administered questionnaire follow-up. CLINICAL RELEVANCE These results provide an insight into the success of medical management for presumptive thoracolumbar disk herniation in dogs and may allow for refinement of treatment protocols.
Resumo:
OBJECTIVE To determine whether body weight, body condition score, or various body dimensions were associated with acute thoracolumbar intervertebral disk extrusion or protrusion and whether any of these factors were associated with severity of clinical signs in Dachshunds. DESIGN Cross-sectional clinical study. ANIMALS 75 Dachshunds with (n = 39) or without (36) acute thoracolumbar intervertebral disk extrusion or protrusion. PROCEDURES Signalment, various body measurements, body weight, body condition score, and spinal cord injury grade were recorded at the time of initial examination. RESULTS Mean T1-S1 distance and median tuber calcaneus-to-patellar tendon (TC-PT) distance were significantly shorter in affected than in unaffected dogs. A 1-cm decrease in T1-S1 distance was associated with a 2.1-times greater odds of being affected, and a 1-cm decrease in TC-PT distance was associated with an 11.1-times greater odds of being affected. Results of multivariable logistic regression also indicated that affected dogs were taller at the withers and had a larger pelvic circumference than unaffected dogs, after adjusting for other body measurements. Results of ordinal logistic regression indicated that longer T1-S1 distance, taller height at the withers, and smaller pelvic circumference were associated with more severe spinal cord injury. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that certain body dimensions may be associated with acute thoracolumbar intervertebral disk extrusion or protrusion in Dachshunds and, in affected dogs, with severity of neurologic dysfunction.