999 resultados para Interstellar hydrogen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti-Zr-V-Mn-Ni-based multi-component alloys demonstrate high discharge capacity in KOH electrolyte. However, the drastic decrease in their discharge capacities makes them unsuitable for use as negative electrode material in the Ni/MH battery. In present work, Ni is partially replaced by Cr in the Ti-Zr-V-Mn-Ni-based alloys to improve their cycle life. The effects of Cr substitution on microstructures and the electrochemical characteristics of the alloys are investigated. It is found that Cr substitution is very effective to improve the cyclic durability of the alloys although the discharge capacity decreases with changing x from 0.05 to 0.20. Some kinetic performances have been also investigated using electrochemical impedance spectroscopy (EIS) and potentiostatic discharge technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The color change induced by triple hydrogen-bonding recognition between melamine and a cyanuric acid derivative grafted on the surface of gold nanoparticles can be used for reliable detection of melamine. Since such a color change can be readily seen by the naked eye, the method enables on-site and real-time detection of melamine in raw milk and infant formula even at a concentration as low as 2.5 ppb without the aid of any advanced instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) cathodic electrochemiluminescence (ECL) was generated at -0.78V at the Pt electrode in acetonitrile (ACN), which suggested that the cathodic ECL differed from conventional cathodic ECL It was found that tripropylamine (TPrA) could enhance this cathodic ECL and the linear range (log-log plot) was 0.2 mu M-0.2 mM. In addition, hydrogen peroxide (H2O2) could inhibit the cathodic ECL and was indirectly detected with the linear range of 27-540 mu M. The RSD (n = 12) of the ECL intensity in the presence of 135 mu M H2O2 was 0.87%. This method was also demonstrated for the fast determination of H2O2 in disinfectant sample and satisfactory results were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diblock polyampholyte brushes with different block sequences (Si/SiO2/poly(acrylic acid)-b-poly (2-vinylpyridine) (PAA-b-P2VP) brushes and Si/SiO2/P2VP-b-PAA brushes) and different block lengths were synthesized by sequent surface-initiated atom transfer radical polymerization (ATRP). The PAA block was obtained through hydrolysis from the corresponding poly(tert-butyl acrylate). The polyampholyte brushes demonstrated unique pH-responsive behavior. In the intermediate pH region, the brushes exhibited a less hydrophilic wetting behavior and a rougher surface morphology due to the formation of polyelectrolyte complex through electrostatic interaction between oppositely charged blocks. In the low pH and high pH regions, the rearrangement of polyampholyte brushes showed great dependence on the block sequence and block length. The polyampholyte brushes with P2VP-b-PAA sequence underwent rearrangement during alternative treatment by acidic aqueous solution (low pH value) and basic aqueous solution (high pH value).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L-lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen-bonded N-H stretching band. The interconversion between the "free" and hydrogen-bonded N-H and C=O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C=O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 degrees C/min or higher, the crystallization of the PLLA soft segments was prohibited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new hydrogen-bonded dinuclear copper(II) coordination compound has been synthesized from the Schiff-base ligand 6-(pyridine-2-ylhydrazonomethyl)phenol (Hphp). The molecular structure of [Cu-2(php)(2)(H2O2)(2)(ClO4)](ClO4)- (H2O) (1), determined by single-crystal X-ray diffraction, reveals the presence of two copper(II) centers held together by means of two strong hydrogen bonds, with O center dot O contacts of only 2.60-2.68 angstrom. Temperature-dependent magnetic susceptibility measurements down to 3 K show that the two metal ions are antiferromagnetically coupled (J = -19.8(2) cm(-1)). This exchange is most likely through two hydrogen-bonding pathways, where a coordinated water on the first Cu, donates a H bond to the O atoms of the coordinated php at the other Cu. This strong O center dot H (water) bonding interaction has been clearly evidenced by theoretical calculations. In the relatively few related cases from the literature, this exchange path, mediated by a (neutral) coordinated water molecule, was not recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti45Zr35Ni17Cu3 amorphous and icosahedral quasicrystal line (I-phase) powders were synthesized by mechanical alloying (MA) and subsequent annealing, the phase structure and hydrogen absorption properties of two powders were investigated. XRD analysis indicated that the MAed powder was an amorphous phase and annealed powder was an I-phase. Two alloy exhibited excellent hydrogen adsorption property and started to absorb hydrogen without induction time. PCT measurement showed that the plateau pressure of the amorphous powders was obviously higher than that of the I-phase powders. After the first hydrogen cycling, the partial amorphous phase changed to (Zr, Ti)H-2 phases, and the I-phase was steady. Similar hydride phases Ti2ZrH4 and (Zr, Ti)H-2 were also formed after the second hydrogen cycling for the amorphous and I-phase alloy powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.