955 resultados para Intense laser pulse
Resumo:
The construction of short pulse (
Comparison of experimental and simulated K-alpha yield for 400nm ultra-short pulse laser irradiation
Resumo:
A detailed investigation has been carried out of N-2 molecules in intense 55 and 220 fs, linear and circular polarized, 790 nm laser pulses. Using an intensity selective scanning technique, ionization, dissociation, and dissociative ionization channels have been studied. Remarkably similar enhancements of signal with linear polarization observed for double ionization and dissociation channels demonstrate the dominance of dynamic alignment over rescattering effects. Fragmentation energies from dissociative ionization are reasonably well reproduced by classical trajectory calculations, the higher charged fragments displaying evidence of post dissociative ionization.
Resumo:
It is now well established that energetic electron emission, nonsequential ionization, and high harmonic generation, produced during the interaction of intense, femtosecond laser pulses with atoms (and atomic positive ions), can be explained by invoking rescattering of the active electron in the laser field, the so-called rescattering mechanism. In contrast for negative ions, the role of rescattering has not been established experimentally. By irradiating F- ions with ultrashort laser pulses, F+ ion yields as a function of intensity for both linearly and circularly polarized light have been measured. We find that, at intensities well below saturation for F+ production by sequential ionization, there is a small but significant enhancement in the yield for the case of linearly polarized light, providing the first clear experimental evidence for the existence of the rescattering mechanism in negative ions.
Resumo:
A study of the K-alpha radiation emitted from Ti foils irradiated with intense, similar to0.2 J, 67 fs, 800 nm laser pulses, scanning a range of intensities (similar to10(15)-10(18) W cm(-2)), is reported. The brightness of single-shot K-alpha line emission from the front of the targets is recorded. The yield from bare titanium (Ti) is compared to that from plastic (parylene-E) coated Ti. It is demonstrated that, for a defocused beam, a thin layer of plastic increases the yield.
Resumo:
The authors present experimental results showing how the use of a high contrast femtosecond laser system allows better optimization of K emission from a Cu target. The shorter scale-length preformed plasma is better optimized for resonance absorption of the laser light when the laser is moved away from best focus. The experimental data show a central peak of K emission at tight focus with strong secondary peaks at large offset. The use of these secondary peaks results in a much reduced hard x-ray background and should lead to shorter K pulses than at tight focus.
Resumo:
The dynamics of dissociation of pre-ionized D2+ molecules using intense (10^12–10^15 W cm-2), ultrashort (50 fs), infrared (? = 790 nm) laser pulses are examined. Use of an intensity selective scan technique has allowed the deuterium energy spectrum to be measured over a broad range of intensity. It is found that the dominant emission shifts to lower energies as intensity is increased, in good agreement with corresponding wavepacket simulations. The results are consistent with an interpretation in terms of bond softening, which at high intensity (approximately >3 × 10^14 W cm-2) becomes dominated by dissociative ionization. Angular distribution measurements reveal the presence of slow molecular dissociation, an indication that vibrational trapping mechanisms occur in this molecule.
Resumo:
Non-sequential processes in the multiple ionization of Xe and Xe+ targets subject to intense femtosecond laser pulses have been investigated. A precise ratio has been determined for the direct comparison of ionization using circular and linear polarized fields. Suppression of non-sequential effects where an ionic target is compared to a neutral atom target has been confirmed.
Resumo:
The FLASH XUV-free electron laser has been used to irradiate solid samples at intensities of the order 10(16) W cm(-2) at a wavelength of 13.5 nm. The subsequent time integrated XUV emission was observed with a grating spectrometer. The electron temperature inferred from plasma line ratios was in the range 5-8 eV with electron density in the range 10(21)-10(22) cm(-3). These results are consistent with the saturation of absorption through bleaching of the L-edge by intense photo-absorption reported in an earlier publication. (C) 2009 Elsevier B.V. All rights reserved.