988 resultados para Instrumentation and orchestration.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient photon detection in gaseous photomultipliers require maximum photoelectron yield from the photocathode surface and also detection of them. In this work we have investigated the parameters that affect the photoelectron yield from the photocathode surface and methods to improve them thus ensuring high detection efficiency of the gaseous photomultiplier. The parameters studied are the electric field at the photocathode surface, surface properties of photocathode and pressure of gas mixture inside the gaseous photomultiplier. It was observed that optimized electric field at the photocathode ensures high detection efficiency. Lower pressure of filled gas increases the photoelectron yield from the photocathode surface but reduces the focusing probability of electrons inside the electron multiplier. Also evacuation for longer duration before gas filling increases the photoelectron yield.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antimony doped tin oxide (Sb:SnO2) nanowires were grown by thermal and e-beam assisted co-evaporation of Sb and Sn in the presence of oxygen at a low substrate temperature of 450 degrees C. The field emission scanning electron microscopy study revealed that the nanowires had a length and diameter of 2-4 mu m and 20-60 nm respectively. Transmission electron microscopy study revealed the single crystalline nature of the nanowires; energy dispersive X-ray spectroscopy (EDS) and EDS mapping on the nanowires confirmed the presence of Sb doping in the nanowires. UV light detection study on the doped SnO2 nanowire films exhibited fast response and recovery time compared to undoped SnO2 nanowire films. This is an innovative and simple method to grow doped SnO2 nanowires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present in this paper, approximate analytical expressions for the intensity of light scattered by a rough surface, whose elevation. xi(x,y) in the z-direction is a zero mean stationary Gaussian random variable. With (x,y) and (x',y') being two points on the surface, we have h. = 0 with a correlation, = sigma(2)g(r), where r = (x - x')(2) + ( y - y')(2)](1/2) is the distance between these two points. We consider g(r) = exp-r/l)(beta)] with 1 <= beta <= 2, showing that g(0) = 1 and g(r) -> 0 for r >> l. The intensity expression is sought to be expressed as f(v(xy)) = {1 + (c/2y)v(x)(2) + v(y)(2)]}(-y), where v(x) and v(y) are the wave vectors of scattering, as defined by the Beckmann notation. In the paper, we present expressions for c and y, in terms of sigma, l, and beta. The closed form expressions are verified to be true, for the cases beta = 1 and beta = 2, for which exact expressions are known. For other cases, i.e., beta not equal 1, 2 we present approximate expressions for the scattered intensity, in the range, v(xy) = (v(x)(2) + v(y)(2))(1/2) <= 6.0 and show that the relation for f(v(xy)), given above, expresses the scattered intensity quite accurately, thus providing a simple computational methods in situations of practical importance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hafnium dioxide (HfO2) films, deposited using electron beam evaporation, are optimized for high performance back-gated graphene transistors. Bilayer graphene is identified on HfO2/Si substrate using optical microscope and subsequently confirmed with Raman spectroscopy. Back-gated graphene transistor, with 32 nm thick HfO2 gate dielectric, has been fabricated with very high transconductance value of 60 mu S. From the hysteresis of the current-voltage characteristics, we estimate the trap density in HfO2 to be in the mid 10(11)/cm(2) range, comparable to SiO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report selective optical reflectance in an aluminium (Al) coated flexible carbon nanotube (CNT) thin film over a wide range of wavelengths (500-2500 nm). Selective-wavelength surface is achieved by coating CNT surfaces with Al thin film that presented a maximum optical reflectivity of similar to 65% in the infrared region. However, CNT film alone showed a reflectance of 15-20% over a larger range of wavelengths without any structural modification, which has not been realized so far. Moreover, a tailorable reflectance in CNT is shown to be achieved by tuning various parameters, namely, the porosity of the material, angle of an incident light, and refractive index of the materials. Owing to higher infrared reflectivity and thermal diffusivity, Al coated CNT presents a potential for a high efficiency solar collector. (C) 2013 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have demonstrated novel concept of utilizing the photomechanical actuation in carbon nanotubes (CNTs) to tune and reversibly switch the Bragg wavelength. When fiber Bragg grating coated with CNTs (CNT-FBG) is exposed externally to a wide range of optical wavelengths, e. g., ultraviolet to infrared (0.2-200 mu m), a strain is induced in the CNTs which alters the grating pitch and refractive index in the CNT-FBG system resulting in a shift in the Bragg wavelength. This novel approach will find applications in telecommunication, sensors and actuators, and also for real time monitoring of the photomechanical actuation in nanoscale materials. (C) 2013 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The detection efficiency of a GEM based UV sensitive gaseous photomultiplier (GPM) depends on the focusing of electrons from the drift gap to the GEM aperture. We have studied the effect of drift parameters on the efficiency of electron focusing into Thick GEM (THGEM) holes in a GPM with semitransparent UV photoconverter. This study comprises simulation of electron focusing into THGEM holes using GARFIELD for different Ar and Ne based gas mixtures and experimental investigations of the same with P10 gas mixture. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a light sheet based imaging flow cytometry technique for simultaneous counting and imaging of cells on a microfluidic platform. Light sheet covers the entire microfluidic channel and thus omits the necessity of flow focusing and point scanning based technology. Another advantage lies in the orthogonal detection geometry that totally cuts-off the incident light, thereby substantially reducing the background in the detection. Compared to the existing state-of-art techniques the proposed technique shows marked improvement. Using fluorescently-coated Saccharomyces cerevisiae cells we have recorded cell counting with throughput as high as 2,090 cells/min in the low flow rate regime and were able to image the individual cells on-the-go. Overall, the proposed system is cost-effective and simple in channel geometry with the advantage of efficient counting in operational regime of low laminar flow. This technique may advance the emerging field of microfluidic based cytometry for applications in nanomedicine and point of care diagnostics. Microsc. Res. Tech. 76:1101-1107, 2013. (c) 2013 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to rapid improvements in on-board instrumentation and atmospheric observation systems, in most cases, aircraft are able to steer clear of regions of adverse weather. However, they still encounter unexpected bumpy flight conditions in regions away from storms and clouds. This is the phenomenon of clear air turbulence (CAT), which has been a challenge to our understanding as well as efforts at prediction. While most of such cases result in mild discomfort, a few cases can be violent leading to serious injuries to passengers and damage to the aircraft. The underlying physical mechanisms have been sought to be explained in terms of fluid dynamic instabilities and waves in the atmosphere. The main mechanisms which have been proposed are: (i) Kelvin-Helmholtz instability of shear layers, (ii) waves generated from flow over mountains, (iii) inertia-gravity waves from clouds and other sources, (iv) spontaneous imbalance theory and (v) horizontal vortex tubes. This has also undergone a change over the years. We present an overview of the mechanisms proposed and their implications for prediction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 +/- A 4.1) and the RIP (19.57 +/- A 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Girsanov linearization method (GLM), proposed earlier in Saha, N., and Roy, D., 2007, ``The Girsanov Linearisation Method for Stochastically Driven Nonlinear Oscillators,'' J. Appl. Mech., 74, pp. 885-897, is reformulated to arrive at a nearly exact, semianalytical, weak and explicit scheme for nonlinear mechanical oscillators under additive stochastic excitations. At the heart of the reformulated linearization is a temporally localized rejection sampling strategy that, combined with a resampling scheme, enables selecting from and appropriately modifying an ensemble of locally linearized trajectories while weakly applying the Girsanov correction (the Radon-Nikodym derivative) for the linearization errors. The semianalyticity is due to an explicit linearization of the nonlinear drift terms and it plays a crucial role in keeping the Radon-Nikodym derivative ``nearly bounded'' above by the inverse of the linearization time step (which means that only a subset of linearized trajectories with low, yet finite, probability exceeds this bound). Drift linearization is conveniently accomplished via the first few (lower order) terms in the associated stochastic (Ito) Taylor expansion to exclude (multiple) stochastic integrals from the numerical treatment. Similarly, the Radon-Nikodym derivative, which is a strictly positive, exponential (super-) martingale, is converted to a canonical form and evaluated over each time step without directly computing the stochastic integrals appearing in its argument. Through their numeric implementations for a few low-dimensional nonlinear oscillators, the proposed variants of the scheme, presently referred to as the Girsanov corrected linearization method (GCLM), are shown to exhibit remarkably higher numerical accuracy over a much larger range of the time step size than is possible with the local drift-linearization schemes on their own.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Waveguides were fabricated on GeGaSEr chalcogenide glass using ultrafast laser inscription method. The thermal diffusion model is discussed for understanding the light matter interaction and shown the effect of net-fluence in waveguide formation on chalcogenide glass. (C) 2012 Optical Society of America