919 resultados para Information retrieval
Resumo:
This thesis examines children's consumer choice behaviour using an information processing perspective, with the fundamental goal of applying academic research to practical marketing and commercial problems. Proceeding a preface, which describes the academic and commercial terms of reference within which this interdisciplinary study is couched, the thesis comprises four discernible parts. Initially, the rationale inherent in adopting an information processing perspective is justified and the diverse array of topics which have bearing on children's consumer processing and behaviour are aggregated. The second part uses this perspective as a springboard to appraise the little explored role of memory, and especially memory structure, as a central cognitive component in children's consumer choice processing. The main research theme explores the ease with which 10 and 11 year olds retrieve contemporary consumer information from subjectively defined memory organisations. Adopting a sort-recall paradigm, hierarchical retrieval processing is stimulated and it is contended that when two items, known to be stored proximally in the memory organisation are not recalled adjacently, this discrepancy is indicative of retrieval processing ease. Results illustrate the marked influence of task conditions and orientation of memory structure on retrieval; these conclusions are accounted for in terms of input and integration failure. The third section develops the foregoing interpellations in the marketing context. A straightforward methodology for structuring marketing situations is postulated, a basis for segmenting children's markets using processing characteristics is adopted, and criteria for communicating brand support information to children are discussed. A taxonomy of market-induced processing conditions is developed. Finally, a case study with topical commercial significance is described. The development, launch and marketing of a new product in the confectionery market is outlined, the aetiology of its subsequent demise identified and expounded, and prescriptive guidelines are put forward to help avert future repetition of marketing misjudgements.
Resumo:
The realization of the Semantic Web is constrained by a knowledge acquisition bottleneck, i.e. the problem of how to add RDF mark-up to the millions of ordinary web pages that already exist. Information Extraction (IE) has been proposed as a solution to the annotation bottleneck. In the task based evaluation reported here, we compared the performance of users without access to annotation, users working with annotations which had been produced from manually constructed knowledge bases, and users working with annotations augmented using IE. We looked at retrieval performance, overlap between retrieved items and the two sets of annotations, and usage of annotation options. Automatically generated annotations were found to add value to the browsing experience in the scenario investigated. Copyright 2005 ACM.
Resumo:
In order to address problems of information overload in digital imagery task domains we have developed an interactive approach to the capture and reuse of image context information. Our framework models different aspects of the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. The approach allows us to gauge a measure of a user's intentions as they complete goal-directed image tasks. As users analyze retrieved imagery their interactions are captured and an expert task context is dynamically constructed. This human expertise, proficiency, and knowledge can then be leveraged to support other users in carrying out similar domain tasks. We have applied our techniques to two multimedia retrieval applications for two different image domains, namely the geo-spatial and medical imagery domains. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Query expansion (QE) is a potentially useful technique to help searchers formulate improved query statements, and ultimately retrieve better search results. The objective of our query expansion technique is to find a suitable additional term. Two query expansion methods are applied in sequence to reformulate the query. Experiments on test collections show that the retrieval effectiveness is considerably higher when the query expansion technique is applied.
Resumo:
Electronic publishing exploits numerous possibilities to present or exchange information and to communicate via most current media like the Internet. By utilizing modern Web technologies like Web Services, loosely coupled services, and peer-to-peer networks we describe the integration of an intelligent business news presentation and distribution network. Employing semantics technologies enables the coupling of multinational and multilingual business news data on a scalable international level and thus introduce a service quality that is not achieved by alternative technologies in the news distribution area so far. Architecturally, we identified the loose coupling of existing services as the most feasible way to address multinational and multilingual news presentation and distribution networks. Furthermore we semantically enrich multinational news contents by relating them using AI techniques like the Vector Space Model. Summarizing our experiences we describe the technical integration of semantics and communication technologies in order to create a modern international news network.
Resumo:
The approaches to the analysis of various information resources pertinent to user requirements at a semantic level are determined by the thesauruses of the appropriate subject domains. The algorithms of formation and normalization of the multilinguistic thesaurus, and also methods of their comparison are given.
Resumo:
Due to the rapid growth of the number of digital media elements like image, video, audio, graphics on Internet, there is an increasing demand for effective search and retrieval techniques. Recently, many search engines have made image search as an option like Google, AlltheWeb, AltaVista, Freenet. In addition to this, Ditto, Picsearch, can search only the images on Internet. There are also other domain specific search engines available for graphics and clip art, audio, video, educational images, artwork, stock photos, science and nature [www.faganfinder.com/img]. These entire search engines are directory based. They crawls the entire Internet and index all the images in certain categories. They do not display the images in any particular order with respect to the time and context. With the availability of MPEG-7, a standard for describing multimedia content, it is now possible to store the images with its metadata in a structured format. This helps in searching and retrieving the images. The MPEG-7 standard uses XML to describe the content of multimedia information objects. These objects will have metadata information in the form of MPEG-7 or any other similar format associated with them. It can be used in different ways to search the objects. In this paper we propose a system, which can do content based image retrieval on the World Wide Web. It displays the result in user-defined order.
Resumo:
Our research explores the possibility of categorizing webpages and webpage genre by structure or layout. Based on our results, we believe that webpage structure could play an important role, along with textual and visual keywords, in webpage categorization and searching.
Resumo:
In this paper a new method for image retrieval using high level color semantic features is proposed. It is based on extraction of low level color characteristics and their conversion into high level semantic features using Johannes Itten theory of color, Dempster-Shafer theory of evidence and fuzzy production rules.
Resumo:
As the volume of image data and the need of using it in various applications is growing significantly in the last days it brings a necessity of retrieval efficiency and effectiveness. Unfortunately, existing indexing methods are not applicable to a wide range of problem-oriented fields due to their operating time limitations and strong dependency on the traditional descriptors extracted from the image. To meet higher requirements, a novel distance-based indexing method for region-based image retrieval has been proposed and investigated. The method creates premises for considering embedded partitions of images to carry out the search with different refinement or roughening level and so to seek the image meaningful content.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^
Resumo:
This thesis research describes the design and implementation of a Semantic Geographic Information System (GIS) and the creation of its spatial database. The database schema is designed and created, and all textual and spatial data are loaded into the database with the help of the Semantic DBMS's Binary Database Interface currently being developed at the FIU's High Performance Database Research Center (HPDRC). A friendly graphical user interface is created together with the other main system's areas: displaying process, data animation, and data retrieval. All these components are tightly integrated to form a novel and practical semantic GIS that has facilitated the interpretation, manipulation, analysis, and display of spatial data like: Ocean Temperature, Ozone(TOMS), and simulated SeaWiFS data. At the same time, this system has played a major role in the testing process of the HPDRC's high performance and efficient parallel Semantic DBMS.
Resumo:
The outcome of this research is an Intelligent Retrieval System for Conditions of Contract Documents. The objective of the research is to improve the method of retrieving data from a computer version of a construction Conditions of Contract document. SmartDoc, a prototype computer system has been developed for this purpose. The system provides recommendations to aid the user in the process of retrieving clauses from the construction Conditions of Contract document. The prototype system integrates two computer technologies: hypermedia and expert systems. Hypermedia is utilized to provide a dynamic way for retrieving data from the document. Expert systems technology is utilized to build a set of rules that activate the recommendations to aid the user during the process of retrieval of clauses. The rules are based on experts knowledge. The prototype system helps the user retrieve related clauses that are not explicitly cross-referenced but, according to expert experience, are relevant to the topic that the user is interested in.