933 resultados para Inertial forces
Resumo:
In Velloziaceae, the number of subsidiary cells has been used to characterize species and support groups. Nevertheless, the homology of the stomatal types have not been scrutinized. Stomatal ontogenesis of Vellozia epidendroides and V. plicata, assigned to have tetracytic stomata, and of V. glauca and Barbacenia riparia, assigned to have paracytic stomata, were investigated. In the four species studied, stomata followed perigenic development. Subsidiary cells arise from oblique divisions of neighbouring cells of the guard mother cell (GMC). These cells are elongated and parallel to the longer axis of the stoma. Polar cells show wide variation, following the shape and size of the epidermal cells in the vicinity. Hence, these cells cannot be called subsidiary cells. This wide variation is due to a much higher density of stomata in some regions of the leaf blade. This distribution of stomata forces the development of short polar cells, leading to an apparently tetracytic stomata. In regions of low concentration of stomata, higher spatial availability between the GMCs allows the elongation of polar cells, leading to evident paracytic stomata. Therefore, the four studied species are considered braquiparacytic, questioning the classification of stomata into tetracytic and paracytic in Velloziaceae.
Resumo:
The maxilla and masseter muscles are components of the stomatognathic system involved in chewing, which is frequently affected by physical forces such as gravity, and by dental, orthodontic and orthopedic procedures. Thyroid hormones (TH) are known to regulate the expression of genes that control bone mass and the oxidative properties of muscles; however, little is known about the effects of TH on the stomatognathic system. This study investigated this issue by evaluating: i) osteoprotegerin (OPG) and osteopontine (OPN) mRNA expression in the maxilla and ii) myoglobin (Mb) mRNA and protein expression, as well as fiber composition of the masseter. Male Wistar rats (~250 g) were divided into thyroidectomized (Tx) and sham-operated (SO) groups (N = 24/group) treated with T3 or saline (0.9%) for 15 days. Thyroidectomy increased OPG (~40%) and OPN (~75%) mRNA expression, while T3 treatment reduced OPG (~40%) and OPN (~75%) in Tx, and both (~50%) in SO rats. Masseter Mb mRNA expression and fiber type composition remained unchanged, despite the induction of hypo- and hyperthyroidism. However, Mb content was decreased in Tx rats even after T3 treatment. Since OPG and OPN are key proteins involved in the osteoclastogenesis inhibition and bone mineralization, respectively, and that Mb functions as a muscle store of O2 allowing muscles to be more resistant to fatigue, the present data indicate that TH also interfere with maxilla remodeling and the oxidative properties of the masseter, influencing the function of the stomatognathic system, which may require attention during dental, orthodontic and orthopedic procedures in patients with thyroid diseases.
Resumo:
Objetivou-se com este trabalho utilizar regras de associação para identificar forças de mercado que regem a comercialização de touros com avaliação genética pelo programa Nelore Brasil. Essas regras permitem evidenciar padrões implícitos nas transações de grandes bases de dados, indicando causas e efeitos determinantes da oferta e comercialização de touros. Na análise foram considerados 19.736 registros de touros comercializados, 17 fazendas e 15 atributos referentes às diferenças esperadas nas progênies dos reprodutores, local e época da venda. Utilizou-se um sistema com interface gráfica usuário-dirigido que permite geração e seleção interativa de regras de associação. Análise de Pareto foi aplicada para as três medidas objetivas (suporte, confiança e lift) que acompanham cada uma das regras de associação, para validação das mesmas. Foram geradas 2.667 regras de associação, 164 consideradas úteis pelo usuário e 107 válidas para lift ≥ 1,0505. As fazendas participantes do programa Nelore Brasil apresentam especializações na oferta de touros, segundo características para habilidade materna, ganho de peso, fertilidade, precocidade sexual, longevidade, rendimento e terminação de carcaça. Os perfis genéticos dos touros são diferentes para as variedades padrão e mocho. Algumas regiões brasileiras são nichos de mercado para touros sem registro genealógico. A análise de evolução de mercado sugere que o mérito genético total, índice oficial do programa Nelore Brasil, tornou-se um importante índice para comercialização dos touros. Com o uso das regras de associação, foi possível descobrir forças do mercado e identificar combinações de atributos genéticos, geográficos e temporais que determinam a comercialização de touros no programa Nelore Brasil.
Resumo:
A recente crise financeira global traz consigo efeitos como a redução da atividade econômica e, consequentemente, do consumo de energia. Essa pode ser uma importante oportunidade para reorganizar o sistema energético em bases mais sólidas e sustentáveis: a eficiência, a maior participação das fontes renováveis e a descentralização da produção de energia. O Brasil e outros países em desenvolvimento podem aproveitar a experiência dos países desenvolvidos em eficiência energética, complementando com um programa vigoroso em energias renováveis, particularmente as "modernas" (eólica, solar, biomassa e pequenas hidrelétricas). Entretanto, preocupa o cenário inercial nacional, baseado num aumento da participação das fontes fósseis de energia na matriz, na priorização dos recursos à exploração de petróleo e gás natural e na manutenção de padrões insustentáveis de produção e consumo.
Resumo:
In this work we describe a subtle effect in nuclear physics, associated with three-nucleon forces, which is nevertheless fundamental in the interpretation of experimental results. It is important to notice that three-body effects are of non-pertubative origins, which makes this problem more involving theoretically. The use of Quantum Chromodynamics is fundamental in the understanding of the physics process.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
O presente estudo pretende discorrer a respeito do ciúme romântico heterossexual, na tentativa de compreender um dos sentimentos mais presentes na vida do ser humano. Mesmo que para muitos o ciúme possa representar uma manifestação de amor, ele é, na verdade, um sentimento que produz angústia em muitos parceiros e pode atingir formas doentias, e abalar a saúde mental. Mas também é inevitável, porque em maior ou menor grau, todos estão sujeitos a ele, o que nos obriga a ficar atentos para saber elaborá-lo em favor de nossa vida amorosa. É preciso conhecer profundamente esse sentimento para que se possa compreendê-lo, e elaborarmos estratégias profícuas de enfrentamento para lidarmos com esse fenômeno.
Resumo:
Neste trabalho são investigadas as propriedades mecânicas de poliuretana derivada do óleo de mamona, utilizando a técnica de indentação instrumentada com penetradores de geometrias piramidal e esférica. Foi analisada a influência da forma do penetrador utilizado nos ensaios de indentação instrumentada para se obter valores das propriedades mecânicas de polímero derivado de óleo de mamona. Os penetradores utilizados são de pontas piramidais dos tipos Berkovich e canto de cubo e esférico de raio igual a 150 μm em um Nanoindenter XP TM com cargas aplicadas entre 1 e 200 mN. As penetrações variam de acordo com o formato do penetrador, sendo maiores para pontas agudas. A dureza e o módulo de elasticidade foram determinados, utilizando o método de Oliver e Pharr. Verificou-se que os valores medidos para a dureza são maiores para penetradores mais agudos. Os valores obtidos com a ponta piramidal Berkovich foram de 0,14 GPa para pequenas penetrações e 0,12 GPa para maiores penetrações. Já os valores obtidos com ponta canto de cubo foram 25 a 30% maiores. Isso está relacionado com os volumes das regiões que apresentam deformações plásticas elevadas, no caso de penetradores agudos comparados com os volumes das regiões que sofrem deformações viscoelásticas. A viscosidade aparente determinada, utilizando penetrador esférico em testes de força aplicada constante, é igual a (22 ± 2) × 10(12) Pa.s.
Resumo:
Bovine rumen protein with two levels of residual lipids (1.9 per cent or 3.8 per cent) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9 per cent residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8 per cent in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end
Resumo:
Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.
Resumo:
We explored possible effects of negative covariation among finger forces in multifinger accurate force production tasks on the classical Fitts's speed-accuracy trade-off. Healthy subjects performed cyclic force changes between pairs of targets ""as quickly and accurately as possible."" Tasks with two force amplitudes and six ratics of force amplitude to target size were performed by each of the four fingers of the right hand and four finger combinations. There was a close to linear relation between movement time and the log-transformed ratio of target amplitude to target size across all finger combinations. There was a close to linear relation between standard deviation of force amplitude and movement time. There were no differences between the performance of either of the two ""radial"" fingers (index and middle) and the multifinger tasks. The ""ulnar"" fingers (little and ring) showed higher indices of variability and longer movement times as compared with both ""radial"" fingers and multifinger combinations. We conclude that potential effects of the negative covariation and also of the task-sharing across a set of fingers are counterbalanced by an increase in individual finger force variability in multifinger tasks as compared with single-finger tasks. The results speak in favor of a feed-forward model of multifinger synergies. They corroborate a hypothesis that multifinger synergies are created not to improve overall accuracy, but to allow the system larger flexibility, for example to deal with unexpected perturbations and concomitant tasks.
Resumo:
This paper presents a, simple two dimensional frame formulation to deal with structures undergoing large motions due to dynamic actions including very thin inflatable structures, balloons. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions. Velocity, acceleration and strain are achieved directly from positions, not. displacements, characterizing the novelty of the proposed technique. A non-dimensional space is created and the deformation function (change of configuration) is written following two independent mappings from which the strain energy function is written. The classical New-mark equations are used to integrate time. Dumping and non-conservative forces are introduced into the mechanical system by a rheonomic energy function. The final formulation has the advantage of being simple and easy to teach, when compared to classical Counterparts. The behavior of a bench-mark problem (spin-up maneuver) is solved to prove the formulation regarding high circumferential speed applications. Other examples are dedicated to inflatable and very thin structures, in order to test the formulation for further analysis of three dimensional balloons.
Resumo:
In some circumstances ice floes may be modeled as beams. In general this modeling supposes constant thickness, which contradicts field observations. Action of currents, wind and the sequence of contacts, causes thickness to vary. Here this effect is taken into consideration on the modeling of the behavior of ice hitting inclined walls of offshore platforms. For this purpose, the boundary value problem is first equated. The set of equations so obtained is then transformed into a system of equations, that is then solved numerically. For this sake an implicit solution is developed, using a shooting method, with the accompanying Jacobian. In-plane coupling and the dependency of the boundary terms on deformation, make the problem non-linear and the development particular. Deformation and internal resultants are then computed for harmonic forms of beam profile. Forms of giving some additional generality to the problem are discussed.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods: Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M(max) and F-waves were elicited at different times before or after the vibratory stimulation. Results: The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions: These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.
Resumo:
The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.