982 resultados para Igarapé-Açu - PA
Resumo:
Colloidal Au particles have been deposited on the gold electrode through layer-by-layer self-assembly using cysteamine as cross-linkers. Self-assembly of colloidal Au on the gold electrode resulted in ail easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)(6)]-/[Fe(CN)(6)](3-) on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37degreesC for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based oil this immobilization method exhibits a large linear dynamic range, from 5 - 400 mug/L for detection of Human IgG. The detection limit is about 0.5 mug/L.
Resumo:
We report the measurements of conductivity, I-V curve, and magnetoresistance of a single Au/polyaniline microfiber with a core-shell structure, on which a pair of platinum microleads was attached by focused ion beam. The Au/polyaniline microfiber shows a much higher conductivity (similar to 110 S/cm at 300 K) and a much weaker temperature dependence of resistance [R(4 K)/R(300 K)=5.1] as compared with those of a single polyaniline microtube [sigma(RT)=30-40 S/cm and R(4 K)/R(300 K)=16.2]. The power-law dependence of R(T)proportional to T-beta, with beta=0.38, indicates that the measured Au/polyaniline microfiber is lying in the critical regime of the metal-insulator transition. In addition, the microfiber shows a H-2 dependent positive magnetoresistance at 2, 4, and 6 K.
Resumo:
An effective and facile in Situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of An NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAUCl(4) to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.
Resumo:
A wet chemical approach is used successfully to produce nanostructured Au material by the reduction of sulfonated polyaniline (SPANI) nanotubes. The Au nanostructures obtained are composed of single crystal Au nanoplates, which are aggregated layer-by-layer into stacks or edge-on-face into clusters at various conditions. The Au nanoplate diameter and thickness can be conveniently controlled in the range of 100 nm to 2 mu m and 10 to 30 nm, respectively, with no accompanying single Au nanoparticles being observed. The formation of the Au nanostructures was controlled by the degradation of SPANI. The gradually and slowly released segments of SPANI served as the reductant during the growth of the 2D Au nanostructures.
Resumo:
Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.
Resumo:
A straightforward combination of the seeding growth method and replacement reaction allowed for the formation of a nanorattle composed of a gold core and Pt/Ag shell. The size, structure, and composition of the Pt/Ag rattle-type nanostructure were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectrometry.
Resumo:
The present work describes a convenient approach to fabricate networked nonspherical gold nanostructures by using [G-2]-CO2H dendrimer and toluene as capping and bridging agents in a CH2Cl2 and H2O biphasic system. A controlled linear assembly is achieved without the use of any catalyst at room temperature. UV-vis spectrum, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) analysis show that the product is well networked nanostructures with diameter of 4-10 nm and consists of coalesced face-centered cubic gold nanocrystals. Extended experiments reveal that both benzene and dimethylbenzene can also inhabit the gold ions to make them crosslinked, prolong the nucleation points and eventually facilitate the formation of the networks.
Resumo:
Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H2PtCL6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH4OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode.
Resumo:
A novel solution-phase method for the preparation of Au@ZnO core-shell composites was described. With this method, the composites were grown without heating that is usually needed in other solution methods. Atomic force microscopy (AFM) results show that the diameter of Au@ZnO core-shell composites is about 10.5 nm. X-ray photoelectron spectroscopy (XPS) was applied to characterize Au@ZnO core-shell composites. The optical properties of Au@ZnO core-shell composites, including UV-vis absorption and photo luminescence (PL), were observed at room temperature.
Resumo:
Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.
Resumo:
The electrochemical polymerization of 0.01 M aniline in 1 M H2SO4 aqueous solution on roughened Au surface modified with a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) has been investigated by in situ electrochemical surface-enhanced Raman scattering spectroscopy (SERS). The repeat units and possible structures of the electrodeposited polyaniline (PANI) film were proposed; i.e., aniline monomer is coupled in head-to-tail predominately at the C-4 of aniline and amine of 4-ATP, and the thin PANI film is orientated vertically to substrate surface. Simultaneous Raman spectra during potential scanning indicate clearly that the ultrathin PANI film (in initial growth of the film) consists of semiquinone radical cation (IP+), para-disubstituted benzene (IP and IP+) and quinine diimine (NP) while it is oxidized, and without quinine diimine and semiquinone radical cation while reduced. Meanwhile, the results confirm that 4-ATP monolayer shows a strong promotion on the electrodeposition of aniline monomer, and a possible polymerization mechanism was proposed.
Resumo:
A simple method for the fabrication of Pd nanoparticles is described. The three-dimensional Pd nanoparticle films are directly formed on a gold electrode surface by simple electrodeposition at -200 mV from a solution of 1 M H2SO4+0.01 mM K2PdCl4. X-Ray photoelectron spectroscopy verifies the constant composition of the Pd nanoparticle films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 45-60 nm. It is confirmed that the morphology of the Pd nanoparticle films are correlated with the electrodeposition time and the state of the Au substrate. The resulting Pd-nanoparticle-film-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen in 0.1 M KCl solution. Freshly prepared Pd nanoparticles can catalyze the reduction of O-2 by a 4-electron process at -200 mV in 0.1 M KCl, but this system is not very stable. The cathodic peaks corresponding to the reduction of O-2 gradually decrease with potential cycling and at last reach a steady state. Then two well-defined reduction peaks are observed at -390 and -600 mV vs. Ag/AgCl/KCl (sat.). Those two peaks correspond to a 2-step process for the 4-electron reduction pathway of O-2 in this neutral medium.
Resumo:
Photoactive and electroactive thionine dyes have been introduced in high-surface-area surface-confined Au-nanoparticle superstructures by layer-by-layer deposition techniques.