970 resultados para ISOTHERMAL TITRATION CALORIMETRY
Resumo:
To evaluate whether an activity monitor based on body acceleration measurement can accurately assess the energy cost of the human locomotion, 12 subjects walked a combination of three different speeds (preferred speed +/- 1 km/h) and seven slopes (-15 to +15% by steps of 5%) on a treadmill. Body accelerations were recorded using a triaxial accelerometer attached to the low back. The mean of the integral of the vector magnitude (norm) of the accelerations (mIAN) was calculated. VO2 was measured using continuous indirect calorimetry. When the results were separately analysed for each incline, mIAN was correlated to VO2 (average r = 0.87, p<0.001, n = 36). VO2 was not significantly correlated to mIAN when data were globally analysed (n = 252). Large relative errors occurred when predicted VO2 (estimated from data of level walking) was compared with measured VO2 for different inclines (-53% at +15% incline, to +55% at -15% incline). It is concluded that without an external measurement of the slope, the standard method of analysis of body accelerations cannot accurately predict the energy cost of uphill or downhill walking.
Resumo:
The maternal and foetal anabolic phase characterizing pregnancy requires energy storage and hence a state of positive energy balance. Dietary surveys, however, have shown an increase in energy intake during pregnancy of small magnitude only. Furthermore, indirect calorimetry measurements indicate an elevation of basal or resting energy expenditure (EE), particularly during the 3rd trimester of pregnancy. These results are confirmed by measurements performed in a respiration chamber which showed that the rate of 24 hours EE of pregnant women is significantly more elevated in the 3rd trimester than in the nonpregnant state; the latter is explained by a rise of basal EE and to a smaller extent by an increase in energy cost of moving around as a result of the greater body weight. In contrast, when the results are expressed per unit body weight, the difference in 24 hours EE observed during pregnancy disappeared. It seems that energy sparing mechanisms-which are still largely unknown-may come into play during this period: postprandial thermogenesis appears to be blunted during pregnancy. This indicates an increase in net efficiency of food energy utilization. The degree of adaptation of physical activity-which has not been previously investigated-remains a research topic of great interest for the future.
Resumo:
The effect of graded levels of hyperinsulinemia on energy expenditure, while euglycemia was maintained by glucose infusion, was examined in 22 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 +/- 4, 103 +/- 5, 170 +/- 10, 423 +/- 16, and 1,132 +/- 47 microU/ml. Total body glucose uptake during each of the five insulin clamp studies was 0.41, 0.50, 0.66, 0.74, and 0.77 g/min, respectively. Glucose storage (calculated from the difference between total body glucose uptake minus total glucose oxidation) was 0.25, 0.29, 0.43, 0.49, and 0.52 g/min for each group, respectively, and represented over 60-70% of total glucose uptake. The net increment in energy expenditure after intravenous glucose was 0.08, 0.10, 0.14, 0.17, and 0.23 kcal/min, respectively. Throughout the physiological and supraphysiological range of insulinemia, there was a significant relationship (r = 0.95, P less than 0.001) between the increment in energy expenditure and glucose storage, indicating an energy cost of 0.45 kcal/g glucose stored. However, at each level of hyperinsulinemia, the theoretical value for the energy cost of glucose storage (assuming that all of the glucose is stored in the form of glycogen) could account for only 45-63% of the actual increase in energy expenditure that was measured by indirect calorimetry. These results indicate that factors in addition to glucose storage as glycogen must be responsible for the increase in energy expenditure that accompanies glucose infusion.
Resumo:
As a response to metabolic stress, obese critically-ill patients have the same risk of nutritional deficiency as the non-obese and can develop protein-energy malnutrition with accelerated loss of muscle mass. The primary aim of nutritional support in these patients should be to minimize loss of lean mass and accurately evaluate energy expenditure. However, routinely used formulae can overestimate calorie requirements if the patient's actual weight is used. Consequently, the use of adjusted or ideal weight is recommended with these formulae, although indirect calorimetry is the method of choice. Controversy surrounds the question of whether a strict nutritional support criterion, adjusted to the patient's requirements, should be applied or whether a certain degree of hyponutrition should be allowed. Current evidence suggested that hypocaloric nutrition can improve results, partly due to a lower rate of infectious complications and better control of hyperglycemia. Therefore, hypocaloric and hyperproteic nutrition, whether enteral or parenteral, should be standard practice in the nutritional support of critically-ill obese patients when not contraindicated. Widely accepted recommendations consist of no more than 60-70% of requirements or administration of 11-14 kcal/kg current body weight/day or 22-25 kcal/kg ideal weight/day, with 2-2.5 g/kg ideal weight/day of proteins. In a broad sense, hypocaloric-hyperprotein regimens can be considered specific to obese critically-ill patients, although the complications related to comorbidities in these patients may require other therapeutic possibilities to be considered, with specific nutrients for hyperglycemia, acute respiratory distress syndrome (ARDS) and sepsis. However, there are no prospective randomized trials with this type of nutrition in this specific population subgroup and the available data are drawn from the general population of critically-ill patients. Consequently, caution should be exercised when interpreting these data.
Resumo:
BACKGROUND AND OBJECTIVES Prevalence of hyponutrition in hospitalized patients is very high and it has been shown to be an important prognostic factor. Most of admitted patients depend on hospital food to cover their nutritional demands being important to assess the factors influencing their intake, which may be modified in order to improve it and prevent the consequences of inadequate feeding. In previous works, it has been shown that one of the worst scored characteristics of dishes was the temperature. The aim of this study was to assess the influence of temperature on patient's satisfaction and amount eaten depending on whether the food was served in isothermal trolleys keeping proper food temperature or not. MATERIAL AND METHODS We carried out satisfaction surveys to hospitalized patients having regular diets, served with or without isothermal trolleys. The following data were gathered: age, gender, weight, number of visits, mobility, autonomy, amount of orally taken medication, intake of out-of-hospital foods, qualification of food temperature, presentation and smokiness, amount of food eaten, and reasons for not eating all the content of the tray. RESULTS Of the 363 surveys, 134 (37.96%) were done to patients with isothermal trays and 229 (62.04%) to patients without them. Sixty percent of the patients referred having eaten less than the normal amount within the last week, the most frequent reason being decreased appetite. During lunch and dinner, 69.3% and 67.7%, respectively, ate half or less of the tray content, the main reasons being as follows: lack of appetite (42% at lunch time and 40% at dinner), do not like the food (24.3 and 26.2%) or taste (15.3 and 16.8%). Other less common reasons were the odor, the amount of food, having nausea or vomiting, fatigue, and lack of autonomy. There were no significant differences in the amount eaten by gender, weight, number of visits, amount of medication, and level of physical activity. The food temperature was classified as adequate by 62% of the patients, the presentation by 95%, and smokiness by 85%. When comparing the patients served with or without isothermal trays, there were no differences with regards to baseline characteristics analyzed that might have had an influence on amount eaten. Ninety percent of the patients with isothermal trolley rated the food temperature as good, as compared with 57.2% of the patients with conventional trolley, the difference being statistically significant (P = 0.000). Besides, there were differences in the amount of food eaten between patients with and without isothermal trolley, so that 41% and 27.7% ate all the tray content, respectively, difference being statistically significant (P = 0.007). There were no differences in smokiness or presentation rating. CONCLUSIONS Most of the patients (60%) had decreased appetite during hospital admission. The percentage of hospitalized patients rating the food temperature as being good is higher among patients served with isothermal trolleys. The amount of food eaten by the patients served with isothermal trolleys is significantly higher that in those without them.
Resumo:
En aquest projecte s’ha emprat per primera vegada una nova tècnica d’anàlisi tèrmicadesenvolupada pel Grup de Recerca en Materials (GRM) de la UdG. Per a dur a termeaquesta tasca s’ha analitzat una reacció ben coneguda, la descomposició del carbonatcàlcic en atmosfera inert. En particular s’han fet un conjunt de mesures en condicions isotermes a diferents temperatures i en condicions d’escalfament continu a diferents velocitats. Per a la realització d’aquestes mesures s’empraran tres tècniques diferents: calorimetria diferencial de rastreig (DSC), termogravimetria (TGA) i anàlisis de la composició dels gasos generats en un forn per espectroscòpia de masses (EGA)
Resumo:
OBJECTIVE: To evaluate the effect of a 4-day carbohydrate overfeeding on whole body net de novo lipogenesis and on markers of de novo lipogenesis in subcutaneous adipose tissue of healthy lean humans. RESEARCH METHODS AND PROCEDURES: Nine healthy lean volunteers (five men and four women) were studied after 4 days of either isocaloric feeding or carbohydrate overfeeding. On each occasion, they underwent a metabolic study during which their energy expenditure and net substrate oxidation rates (indirect calorimetry), and the fractional activity of the pentose-phosphate pathway in subcutaneous adipose tissue (subcutaneous microdialysis with 1,6(13)C2,6,6(2)H2 glucose) were assessed before and after administration of glucose. Adipose tissue biopsies were obtained at the end of the experiments to monitor mRNAs of key lipogenic enzymes. RESULTS: Carbohydrate overfeeding increased basal and postglucose energy expenditure and net carbohydrate oxidation. Whole body net de novo lipogenesis after glucose loading was markedly increased at the expense of glycogen synthesis. Carbohydrate overfeeding also increased mRNA levels for the key lipogenic enzymes sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase. The fractional activity of adipose tissue pentose-phosphate pathway was 17% to 22% and was not altered by carbohydrate overfeeding. DISCUSSION: Carbohydrate overfeeding markedly increased net de novo lipogenesis at the expense of glycogen synthesis. An increase in mRNAs coding for key lipogenic enzymes suggests that de novo lipogenesis occurred, at least in part, in adipose tissue. The pentose-phosphate pathway is active in adipose tissue of healthy humans, consistent with an active role of this tissue in de novo lipogenesis.
Resumo:
This study was designed to determine whether glucocorticoids alter autoregulation of glucose production and fructose metabolism. Two protocols with either dexamethasone (DEX) or placebo (Placebo) were performed in six healthy men during hourly ingestion of[13C]fructose (1.33 mmol.kg-1.h-1) for 3 h. In both protocols, endogenous glucose production (EGP) increased by 8 (Placebo) and 7% (DEX) after fructose, whereas gluconeogenesis from fructose represented 82 (Placebo) and 72% (DEX) of EGP. Fructose oxidation measured from breath 13CO2 was similar in both protocols [9.3 +/- 0.7 (Placebo) and 9.6 +/- 0.5 mumol.kg-1.min-1 (DEX)]. Nonoxidative carbohydrate disposal, calculated as fructose administration rate minus net carbohydrate oxidation rate after fructose ingestion measured by indirect calorimetry, was also similar in both protocols [5.8 +/- 0.8 (Placebo) and 5.9 +/- 2.0 mumol.kg-1.min-1 (DEX)]. We concluded that dexamethasone 1) does not alter the autoregulatory process that prevents a fructose-induced increase in gluconeogenesis from increasing total glucose production and 2) does not affect oxidative and nonoxidative pathways of fructose. This indicates that the insulin-regulated enzymes involved in these pathways are not affected in a major way by dexamethasone.
Resumo:
During episodes of trauma carnitine-free total parenteral nutrition (TPN) may result in a reduction of the total body carnitine pool, leading to a diminished rate of fat oxidation. Sixteen patients undergoing esophagectomy were divided randomly in two equal isonitrogenous groups (0.2 g/kg.day). Both received TPN (35 kcal/kg.day; equally provided as long-chain triglycerides and glucose) over 11 days without (group A) and with (group B) L-carnitine supplementation (12 mg/kg.day = 75 mumol/kg.day). Compared with healthy controls, the total body carnitine pool prior to the operation was significantly reduced in both groups, suggesting a state of semistarvation and muscle wasting. In group A the plasma levels of total carnitine and its subfractions (free carnitine, short- and long-chain acylcarnitine) remained stable during the study whereas in group B the total plasma carnitine concentration rose mainly due to an increase in free carnitine. In group A the cumulative urinary carnitine losses were 11.5 +/- 2.6 mmol (= 15.5 +/- 3.1% of the estimated total body carnitine pool). In group B 3.1 +/- 1.9 mmol (= 11.1 +/- 7.6%) of the infused carnitine was retained in the immediate postoperative phase until day 6, but this amount was completely lost at completion of the study period. No significant differences in the respiratory quotient or in the plasma levels of triglycerides, free fatty acids, and ketone bodies were observed, between or within the groups, before the operation and after 11 days of treatment. It is concluded that the usefulness of carnitine supplementation during postoperative TPN was not apparent in the present patient material.
Resumo:
The 24-hour rest-activity pattern and the amount of motor activity was studied in a patient with fatal familial insomnia (FFI) by means of wrist actigraphy. During the study, the patient underwent indirect calorimetry. The 52-day recording showed severe disruption of the 24-hour rest-activity pattern with increased motor activity up to 80%. The 24-hour energy expenditure, assayed in a respiration chamber, was strikingly elevated by 60%. Chronic motor overactivity and loss of circadian rest-activity rhythm may play a role in the progressive metabolic exhaustion leading to death in FFI patients.
Resumo:
The change in energy expenditure consecutive to the infusion of glucose/insulin was examined in 17 non-obese (ten young, seven middle-aged) and 27 diabetic and non-diabetic obese subjects by employing the euglycemic insulin clamp technique in conjunction with continuous indirect calorimetry. The obese subjects were divided into four groups according to their response to a 100-g oral glucose test: group A, normal glucose tolerance; group B, impaired glucose tolerance; group C, diabetes with increased insulin response; group D, diabetes with reduced insulin response. The glucose/insulin infusion provoked an increase in energy expenditure in both young and middle-aged controls (+8.2 +/- 1.3 percent and +5.9 +/- 0.5 percent over the preinfusion baseline respectively), but a lower increase in the non-diabetic obese groups A and B (+4.0 +/- 0.7 percent and +2.0 +/- 1.0 percent over the preinfusion baseline respectively, P less than 0.05 and P less than 0.01 vs young controls). However, in the diabetic obese groups C and D, energy expenditure failed to increase in response to the glucose/insulin infusion (mean change: +0.1 +/- 1.0 percent and -2.0 +/- 1.9 percent (P less than 0.01, vs middle-aged) over the preinfusion baseline respectively). When the glucose-induced thermogenesis (GIT) was related to the glucose uptake--taking into account the hepatic glucose production--the GIT was found to be similarly reduced in the diabetics groups (C and D). The net change in the rate of energy expenditure was found to be significantly correlated with the rate of glucose uptake (r = +0.647, n = 44, P less than 0.001) when all the individuals were pooled. In conclusion, this study shows that the low glucose-induced thermogenesis in obese diabetics during glucose insulin infusion is mainly related to a reduced rate of glucose uptake; in addition, inhibition of gluconeogenesis by the glucose/insulin infusion may also contribute to decrease the thermogenic response.
Resumo:
Background: Physical activity (PA) and related energy expenditure (EE) is often assessed by means of a single technique. Because of inherent limitations, single techniques may not allow for an accurate assessment both PA and related EE. The aim of this study was to develop a model to accurately assess common PA types and durations and thus EE in free-living conditions, combining data from global positioning system (GPS) and 2 accelerometers. Methods: Forty-one volunteers participated in the study. First, a model was developed and adjusted to measured EE with a first group of subjects (Protocol I, n = 12) who performed 6 structured and supervised PA. Then, the model was validated over 2 experimental phases with 2 groups (n = 12 and n = 17) performing scheduled (Protocol I) and spontaneous common activities in real-life condition (Protocol II). Predicted EE was compared with actual EE as measured by portable indirect calorimetry. Results: In protocol I, performed PA types could be recognized with little error. The duration of each PA type could be predicted with an accuracy below 1 minute. Measured and predicted EE were strongly associated (r = .97, P < .001). Conclusion: Combining GPS and 2 accelerometers allows for an accurate assessment of PA and EE in free-living situations.
Resumo:
During the last decade, the development of "bedside" investigative methods, including indirect calorimetry, nutritional balance and stable isotope techniques, have given a new insight into energy and protein metabolism in the neonates. Neonates and premature infants especially, create an unusual opportunity to study the metabolic adaptation to extrauterine life because their physical environment can be controlled, their energy intake and energy expenditure can be measured and the link between their protein metabolism and the energetics of their postnatal growth can be assessed with accuracy. Thus, relatively abstract physiological concepts such as the postnatal timecourse of heat production, energy cost of growth, energy cost of physical activity, thermogenic effect of feeding, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified. These results show that energy expenditure and heat production rates increase postnatally from average values of 40 kcal/kgxday during the first week to 60 kcal/kgxday in the third week. This increase parellels nutritional intakes as well as the rate of weight gain. The thermogenic effect of feeding and the physical activity are relatively low and account only for an average of 5% each of the total heat production. The cost of protein turnover is the highest energy demanding process. The fact that nitrogen balance becomes positive within 72 hours after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism: dry body mass and fat decrease while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches the statural growth. The goals of the following review are to summarize recent data on the physiological aspects of energy and protein metabolism directly related to the extrauterine adaptation, to describe experimental approaches which recently were adapted to the newborns in order to get "bedside results" and to discuss how far these results can help everyday's neonatal practice.
Resumo:
We developed a rapid and simple assay for the coupled in vitro synthesis of oxylipins using free unsaturated fatty acids as substrates. Reactions were catalysed with extracts expressed from living plant tissues. Preliminary experiments involving the cell free transformation of fatty acid hydroperoxides revealed that storage or pretreatment of the plant extract rapidly altered its capacity to catalyse the generation of oxidised fatty acid derivatives. This could reflect changes in oxylipin generation that might take place in situ in damaged plant cells during herbivory. All subsequent experiments were performed without dilution, titration or any other modification of the plant extract prior to its addition to the assay system. The assays were used to study, for the first time, tissue-specific differences in fatty acid transformation to divinyl ethers. Root tissues from tomato efficiently catalysed the formation of corneleic and colnelenic acids from linoleic acid and linolenic acids, respectively, whereas leaf, hypocotyl and cotyledon extracts did not promote the formation of these compounds. We observed the efficient generation of 9-oxo-nonanoic acid from the substrate linolenic acid and speculate that this aldehyde could arise either from the action of hydroperoxide lyase on 9-hydroperoxylinolenic acid or by a novel route involving cleavage of colnelenic acid which was also present among the products of the reaction. A potential role of divinyl ethers as substrates for the generation of toxic aldehydes is discussed
Resumo:
Debido a la gran cantidad de muestras arqueológicas impregnadas con PEG que se encuentran contaminadas por compuestos insolubles de hierro, se plantea la posible extracción y formación de complejos Fe-L (L=PBTC) y sus efectos en (i) la estructura de la matriz orgánica, (ii) la estructura y propiedades físicas del PEG y (iii) el comportamiento de la muestra en la etapa posterior de almacenamiento. El proyecto analiza la formación de compuestos químicos y posibles modificaciones estructurales en el proceso de extracción del hierro. Consiste en un estudio sistemático de un sistema químico y su influencia en los procesos de precipitación de Fe3+ en medio acuoso. El proyecto se fundamenta en: (1) desarrollar un proceso experimental de optimización para la extracción de las sales contaminantes y (2) encontrar las técnicas analíticas óptimas que permitan apreciar modificaciones estructurales de los diferentes sistemas. Se determina la cantidad de hierro extraído mediante A.A. Las interacciones entre PBTC y PEG se analizan por IR. Las modificaciones de determinadas propiedades físicas se determinan por DSC y las estructurales mediante SEM. En las condiciones termodinámicas óptimas se obtiene una extracción superficial del hierro (30-35%). La disolución del PEG origina modificaciones de la masa y el volumen de la muestra