976 resultados para ION MERCURY SYSTEM


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation was conducted to determine the effects of elevated pCO2 on the net production and calcification of an assemblage of corals maintained under near-natural conditions of temperature, light, nutrient, and flow. Experiments were performed in summer and winter to explore possible interactions between seasonal change in temperature and irradiance and the effect of elevated pCO2. Particular attention was paid to interactions between net production and calcification because these two processes are thought to compete for the same internal supply of dissolved inorganic carbon (DIC). A nutrient enrichment experiment was performed because it has been shown to induce a competitive interaction between photosynthesis and calcification that may serve as an analog to the effect of elevated pCO2. Net carbon production, NPC, increased with increased pCO2 at the rate of 3 ± 2% (?mol CO2aq kg?1)?1. Seasonal change of the slope NPC-[CO2aq] relationship was not significant. Calcification (G) was strongly related to the aragonite saturation state ? a . Seasonal change of the G-? a relationship was not significant. The first-order saturation state model gave a good fit to the pooled summer and winter data: G = (8 ± 1 mmol CaCO3 m?2 h?1)(? a ? 1), r 2 = 0.87, P = 0.0001. Both nutrient and CO2 enrichment resulted in an increase in NPC and a decrease in G, giving support to the hypothesis that the cellular mechanism underlying the decrease in calcification in response to increased pCO2 could be competition between photosynthesis and calcification for a limited supply of DIC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Larvae of the Mediterranean pteropod Cavolinia inflexa were maintained at controlled pHT values of 8.1, 7.82 and 7.51, equivalent respectively to pCO2 levels of 380, 857 and 1713 µatm. At pHT 7.82 larvae exhibited malformations and lower shell growth, compared to the control condition. At pHT 7.51 the larvae did not make shells but were viable and showed a normal development. However, smaller shells or no shells will have both ecological (food web) and biogeochemical (export of carbon and carbonate) consequences. These results confirm that 1pteropods, as well as the species dependent upon them as a food resource, will be severely impacted by ocean acidification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence of increasing concentrations of dissolved carbon dioxide, especially in the surface ocean and its associated impacts on calcifying organisms, is accumulating. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium carbonate. Hence, their response to an acidifying ocean may have important consequences for future inorganic carbon cycling. To assess the sensitivity of benthic foraminifera to changing carbon dioxide levels and subsequent alteration in seawater carbonate chemistry, we cultured specimens of the shallow water species Ammonia tepida at two concentrations of atmospheric CO2 (230 and 1900 ppmv) and two temperatures (10 °C and 15 °C). Shell weights and elemental compositions were determined. Impact of high and low pCO2 on elemental composition are compared with results of a previous experiment were specimens were grown under ambient conditions (380 ppvm, no shell weight measurements of specimen grown under ambient conditions are, however, available). Results indicate that shell weights decrease with decreasing [CO3], although calcification was observed even in the presence of calcium carbonate under-saturation, and also decrease with increasing temperature. Thus both warming and ocean acidification may act to decrease shell weights in the future. Changes in [CO3] or total dissolved inorganic carbon do not affect the Mg distribution coefficient. On the contrary, Sr incorporation is enhanced under increasing [CO3]. Implications of these results for the paleoceanographic application of foraminifera are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ± 130 µatm (mean ± sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight per year while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight per year, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13 °C and 18 °C) during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC) increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC) as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased carbon dioxide (CO2) concentration in the atmosphere will change the balance of the components of carbonate chemistry and reduce the pH at the ocean surface. Here, we report the effects of increased CO2 concentration on the early development of the sea urchins Hemicentrotus pulcherrimus and Echinometra mathaei. We examined the fertilization, early cleavage, and pluteus larval stage to evaluate the impact of elevated CO2 concentration on fertilization rate, cleavage rate, developmental speed, and pluteus larval morphology. Furthermore, we compared the effects of CO2 and HCl at the same pH in an attempt to elucidate any differences between the two. We found that fertilization rate, cleavage rate, developmental speed, and pluteus larval size all tended to decrease with increasing CO2 concentration. Furthermore, CO2-seawater had a more severe effect than HCl-seawater on the fertilization rate. By contrast, the effects on cleavage rate, developmental speed, and pluteus larval morphology were similar for CO2- and HCl-seawater. Our results suggest that both decreased pH and altered carbonate chemistry affect the early development and life history of marine animals, implying that increased seawater CO2 concentration will seriously alter marine ecosystems. The effects of CO2 itself on marine organisms therefore requires further clarification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acidification of ocean surface waters by anthropogenic carbon dioxide (CO2) emissions is a currently developing scenario that warrants a broadening of research foci in the study of acid-base physiology. Recent studies working with environmentally relevant CO2 levels, indicate that some echinoderms and molluscs reduce metabolic rates, soft tissue growth and calcification during hypercapnic exposure. In contrast to all prior invertebrate species studied so far, growth trials with the cuttlefish Sepia officinalis found no indication of reduced growth or calcification performance during long-term exposure to 0.6 kPa CO2. It is hypothesized that the differing sensitivities to elevated seawater pCO2 could be explained by taxa specific differences in acid-base regulatory capacity. In this study, we examined the acid-base regulatory ability of S. officinalis in vivo, using a specially modified cannulation technique as well as 31P NMR spectroscopy. During acute exposure to 0.6 kPa CO2, S. officinalis rapidly increased its blood [HCO3] to 10.4 mM through active ion-transport processes, and partially compensated the hypercapnia induced respiratory acidosis. A minor decrease in intracellular pH (pHi) and stable intracellular phosphagen levels indicated efficient pHi regulation. We conclude that S. officinalis is not only an efficient acid-base regulator, but is also able to do so without disturbing metabolic equilibria in characteristic tissues or compromising aerobic capacities. The cuttlefish did not exhibit acute intolerance to hypercapnia that has been hypothesized for more active cephalopod species (squid). Even though blood pH (pHe) remained 0.18 pH units below control values, arterial O2 saturation was not compromised in S. officinalis because of the comparatively lower pH sensitivity of oxygen binding to its blood pigment. This raises questions concerning the potentially broad range of sensitivity to changes in acid-base status amongst invertebrates, as well as to the underlying mechanistic origins. Further studies are needed to better characterize the connection between acid-base status and animal fitness in various marine species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment-related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 µg Gum Xanthan eq /l compared to 269 µg Gum Xanthan eq /l in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. In conclusion, our results suggest that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification, caused by increasing atmospheric concentrations of CO2, is one of the most critical anthropogenicthreats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction. In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms. So far, impacts of relevant CO2concentrations on larval fish have been found in behaviour and otolith size, mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high commercial importance. We reared Atlantic cod larvae at three levels of CO2, (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term ( 2.5 1/2 months) mesocosm experiment. Exposure to CO2 resulted in severe to lethal tissue damage in many internal organs, with the degree of damage increasing with CO2 concentration. As larval survival is the bottleneck to recruitment, ocean acidification has the potential to act as an additional source of natural mortality, affecting populations of already exploited fish stocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2are already at levels of 1,100 µatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 µatm), indicating an adaptational response to CO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.