963 resultados para IMPROVES CARDIAC-FUNCTION
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background/Aims: To investigate the effect of taurine on cardiac remodeling induced by smoking. Methods: In the first step, rats were allocated into two groups: Group C (n=14): control; Group T (n=14): treated with taurine (3% in drinking water), for three months. In the second step, rats were allocated into two groups: Group ETS (n=9): rats exposed to tobacco smoke; Group ETS-T (n=9): rats exposed to tobacco smoke and treated with taurine for two months. Results: After three months, taurine presented no effects on morphological or functional variables of normal rats assessed by echocardiogram. on the other hand, after two months, ETS-T group presented higher LV wall thickness (ETS=1.30 (1.20-1.42); ETS-T=1.50 (1.40-1.50); p=0.029), E/A ratio (ETS=1.13 +/- 0.13; ETS-T=1.37 +/- 0.26; p=0.028), and isovolumetric relaxation time normalized for heart rate (ETS=53.9 +/- 4.33; ETS-T=72.5 +/- 12.0; p<0.001). The cardiac activity of the lactate dehydrogenase was higher in the ETS-T group (ETS=204 +/- 14 nmol/mg protein; ETS-T=232 +/- 12 nmol/mg protein; p<0.001). ETS-T group presented lower levels of phospholamban (ETS=1.00 +/- 0.13; ETS-T=0.82 +/- 0.06; p=0.026), phosphorylated phospholamban at Ser16 (ETS=1.00 +/- 0.14;ETS-T=0.63 +/- 0.10;p=0.003), and phosphorylated phosfolamban/phospholamban ratio (ETS=1.01 +/- 0.17; ETS-T=0.77 +/- 0.11; p=0.050). Conclusion: In normal rats, taurine produces no effects on cardiac morphological or functional variables. on the other hand, in rats exposed to cigarette smoke, taurine supplementation increases wall thickness and worsens diastolic function, associated with alterations in calcium handling protein and cardiac energy metabolism. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to demonstrate that hypertrophied cardiac muscle is more sensitive to volume-overload than normal cardiac muscle. We assessed the mechanical function of isolated left ventricular papillary muscle from male spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) Submitted to volume overload caused by aortocaval fistula (ACF) for 30 days. Muscles were perfused with Krebs-Henseleit solution at 28degreesC and Studied isometrically at a Stimulation rate of 0.2 Hz. The ACF increased the right and left ventricular weight-to-body weight ratio in WKY rats; it also promoted right ventricular hypertrophy and further increased the basal hypertrophy in the left ventricle from SHR. The arterial systolic pressure was greater in SHR than in WKY rats, and decreased with ACF in both groups. Developed tension (DT) and maximum rate of DT (+dT/dt) were greater in the SHR-control than in the WKY-control (P<0.05); the time from peak tension to 50% relaxation (RT1/2) was similar in these animals. ACE did not change any parameters ill the SHR group and increased the resting tension in the WKY group. However, the significant difference observed between myocardial contraction performance in WKY-controls and SHR-controls disappeared when the SHR-ACF and WKY-controls were compared. Furthermore, RT1/2 increased significantly ill the SHR-ACF in relation to the WKY-controls. In conclusion, the data lead LIS to infer that volume-overload for 30 days promotes more mechanical functional changes in hypertrophied muscle than in normal cardiac muscle.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To determine the effect of dietary restriction on metabolic pathways and the relationship of the metabolic shifting on antioxidant enzymes in cardiac tissue. Design: Randomized, controlled study. Male rats at 60 days old were randomly divided into four groups. Materials and Methods: The rats of control groups C30 and C60 were given free access to the diet over 30 and 60 days. The rats of the DR30 group were fed 60% of the chow consumed by the control groups over 30 days. The animals of the DR60 group ate 60% of the amount consumed by the C60 group over 60 days. Serum was used for total protein, lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Protein, glycogen, total lipids, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), LDH, AST and ALT were determined in cardiac tissue. Results: Dietary restriction induced diminished serum and cardiac LDH activities. AST activities were lower in the serum and cardiac muscle of the DR60 animals. Dietary restriction induced elevated total lipid concentrations in cardiac muscle. No significant differences were observed in total protein and glycogen content among the groups. Antioxidant enzyme determinations demonstrated increased cardiac GSH-Px activities in the DR60 animals and increased SOD activities in the cardiac tissue of both feed-restricted groups. Conclusions: Dietary restriction was protective against oxidative stress in the heart by improving cardiac endogenous antioxidant defences and shifting the metabolic pathway for energy production.
Resumo:
The sensing of blood gas tensions and/or pH is an evolutionarily conserved, homeostatic mechanism, observable in almost all species studied from invertebrates to man. In vertebrates, a shift from the peripheral O2-oriented sensing in fish, to the central CO2/pH sensing in most tetrapods reflects the specific behavioral requirements of these two groups whereby, in teleost fish, a highly O2-oriented control of breathing matches the ever-changing and low oxygen levels in water, whilst the transition to air-breathing increased the importance of acid-base regulation and O2-related drive, although retained, became relatively less important. The South American lungfish and tetrapods are probably sister groups, a conclusion backed up by many similar features of respiratory control. For example, the relative roles of peripheral and central chemoreceptors are present both in the lungfish and in land vertebrates. In both groups, the central CO2/pH receptors dominate the ventilatory response to hypercarbia (60-80), while the peripheral CO2/pH receptors account for 20-30. Some basic components of respiratory control have changed little during evolution. This review presents studies that reflect the current trends in the field of chemoreceptor function, and several laboratories are involved. An exhaustive review on the previous literature, however, is beyond the intended scope of the article. Rather, we present examples of current trends in respiratory function in vertebrates, ranging from fish to humans, and focus on both O2 sensing and CO2 sensing. As well, we consider the impact of chronic levels of hypoxia - a physiological condition in fish and in land vertebrates resident at high elevations or suffering from one of the many cardiorespiratory disease states that predispose an animal to impaired ventilation or cardiac output. This provides a basis for a comparative physiology that is informative about the evolution of respiratory functions in vertebrates and about human disease. Currently, most detail is known for mammals, for which molecular biology and respiratory physiology have combined in the discovery of the mechanisms underlying the responses of respiratory chemoreceptors. Our review includes new data on nonmammalian vertebrates, which stresses that some chemoreceptor sites are of ancient origin.
Resumo:
Objectives: To examine the change in health-related quality of life (HRQOL) and its determinants in children with juvenile idiopathic arthritis (JIA) treated with methotrexate (MTX). Methods: Patients were extracted from the PRINTO clinical trial which aimed to evaluate the efficacy and safety profile of MTX administered in standard, intermediate or higher doses (10, 15 and 30 mg/m2/week respectively). Children with polyarticular-course JIA, who were less than 18 years and had a complete HRQOL assessment were included. Results: A total of 521 children were included. At baseline, patients with JIA showed poorer HRQOL (p<0.01) than healthy children. In 207/412 (50%) and 63 (15%) children, HRQOL values were 2 standard deviations below the mean of healthy controls in the physical and psychosocial summary scale, respectively. After 6 months of treatment with standard dose MTX, there was a statistically significant improvement in all HRQOL health concepts, particularly the physical ones. Similar improvements were observed in those who did not respond to a standard dose of MTX and were subsequently randomised to a higher dose. The presence of marked disability at baseline was associated with a fivefold increased risk of retaining poor physical health after 6 months of active treatment with standard dose MTX. Other less important determinants of retaining poor physical well-being were the baseline level of systemic inflammation, pain intensity and an antinuclear-antibody-negative status. Conclusions: MTX treatment produces a significant improvement across a wide range of HRQOL components, particularly in the physical domains, in patients with JIA.
Resumo:
Background. Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx -) were measured. Concentration- response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results. High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NO x - levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation. © 2008 de Moraes et al; licensee BioMed Central Ltd.
Resumo:
Background. The literature did not evidence yet with which age spontaneously hypertensive rats (SHR) start to present baroreflex reduction. We endeavored to evaluate the baroreflex function in eight-week-old SHR. Methods. Male Wistar Kyoto (WKY) normotensive rats and SHR aged eight weeks were studied. Baroreflex was calculated as the variation of heart rate (HR) divided by the mean arterial pressure (MAP) variation (HR/MAP) tested with a depressor dose of sodium nitroprusside (SNP, 50 g/kg) and with a pressor dose of phenylephrine (PHE, 8 g/kg) in the right femoral venous approach through an inserted cannula in the animals. Significant differences for p < 0.05. Results. Baseline MAP (p < 0.0001) and HR (p = 0.0028) was higher in SHR. Bradycardic peak was attenuated in SHR (p < 0.0001), baroreflex gain tested with PHE was also reduced in the SHR group (p = 0.0012). PHE-induced increase in MAP was increased in WKY compared to SHR (p = 0.039). Bradycardic reflex responses to intravenous PHE was decreased in SHR (p < 0.0001). Conclusion. Eight weeks old SHR already presents impairment of the parasympathetic component of baroreflex. © 2010 Cisternas et al; licensee BioMed Central Ltd.
Resumo:
Background: To investigate the effect of lisinopril on cardiac remodeling induced by smoking. Material/Methods: Rats were allocated into 3 groups: group CON (n=8): control; group CSE (n=8): cigarette smoke exposure; group CSE-LIS (n=8): exposed to tobacco smoke and treated with lisinopril. Results: After 2 months, the tail systolic pressure was lower in CSE-LIS (CON=116 ±27 mm Hg, CSE=126±16, CSE-LIS=89±12; P<.001). CSE animals showed higher left ventricular systolic diameter (CON=8.25±2.16 mm/kg, CSE=11.5±1.3, CSE-LIS=9.27±2.00; P=.009) and myocyte cross-sectional area (CON=245±8 μm2, CSE=260±17, CSE-LIS=238±12; P=.01) than CON and CSE-LIS. The ejection fraction (CON =0.91±0.02, CSE=0.86±0.02, CSE-LIS=0.92±0.03; P=.002) and fractional shortening (CON=55.7±4.41%, CSE=48.7±3.43, CSE-LI=58.2±7.63; P=.006) were lower in CSE group than CON and CSE-LIS. CSE and CSE-LIS animals showed higher collagen amounts (CON=3.49±0.95%, CSE= 5.01±1.58, CSE-LIS=5.27±0.62; P=.009) than CON. CON group showed a higher connexin 43 amount in the intercalated disc (CON=3.70±0.38, CSE=2.13±0.53; CSE-LIS=2.17±0.73; P=.004) than CSE and CSE-LIS. There were no differences in IFN-g or TNF-a cardiac levels among the groups. Conclusions: Lisinopril attenuated both morphologic and functional abnormalities induced by exposure to tobacco smoke. In addition, this effect was associated with diminished blood pressure, but not alterations in connexin 43 distribution, cytokine production or collagen amount. © Med Sci Monit, 2010.
Resumo:
Background: The aim of this study was to analyze stable hypertrophied myocardial function and its response to inotropic maneuvers in rats submitted to renovascular hypertension for a 10-week period (RHT group, n=10). Material/Methods: Myocardial performance was studied in isolated left ventricle papillary muscles in isometric contraction under the following conditions: at postrest contraction of 30 seconds (PRC), at extracellular calcium (ECa 2+) chloride concentration of 1.25 and 5.20 mM, and after beta-adrenergic stimulation with 10 -6 M isoproterenol (ISOP). Results: The results were compared with normotensive Wistar controls rats (C group, n=10). In basal condition, resting tension, and contraction time (TPT) were greater, while relaxation time (RT 50) tended to be longer in RHT than C group. PRC and ISOP promoted a similar change in muscle function response intensity (Δ) in both groups. ECa 2+ shift did not change TPT in the C group and decreased TPT in the RHT animals; Δ was different between these groups. RT 50 increased in C and decreased in RHT, both without statistical significance; however, Δ was different. Conclusions: These results suggest that hypertrophied myocardial dysfunction may be attibuted to changes in intracellular calcium cycling. © Med Sci Monit, 2010.
Resumo:
Cardiac or ventricular remodeling is characterized by molecular, cellular, and interstitial alterations that lead to changes in heart size, mass, geometry and function in response to a given insult. Currently, tobacco smoke exposure is recognized as one of these insults. Indeed, tobacco smoke exposure induces the enlargement of the left-sided cardiac chambers, myocardial hypertrophy, and ventricular dysfunction. Potential mechanisms for these alterations include hemodynamic and neurohormonal changes, oxidative stress, inflammation, nitric oxide bioavailability, matrix metalloproteinases and mitogen-activated protein kinase activation. This review will focus on the concepts, relevance, and potential mechanisms of cardiac remodeling induced by tobacco smoke. © 2012 Bentham Science Publishers.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.