952 resultados para IMMUNOGLOBULIN-LIKE PROTEIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last decade, the discovery that astrocytes possess a nonelectrical form of excitability (Ca21-excitability) that leads to the release of chemical transmitters, an activity called ''gliotransmission'', indicates that these cells may have additional important roles in brain function. Elucidating the stimulus-secretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. Here by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the spatiotemporal characteristics of stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes. We performed the analysis at both the whole-cell and single-vesicle levels providing the first system for comparing exo-endocytic processes in astrocytes with those in neurons. Both the time course and modalities of secretion in astrocytes present more similarities to neurons then previously expected. We found that 1. the G-protein-coupled receptor (GPCR)-evoked exocytosis reached the maximum on a ms time scale and that 2. ER tubuli formed sub-micrometer domains beneath the plasma membrane in close proximity to exocytic vesicles, where fusion events were spatiotemporally correlated with fast Ca21 events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-insulin-dependent, or type II, diabetes mellitus is characterized by a progressive impairment of glucose-induced insulin secretion by pancreatic beta cells and by a relative decreased sensitivity of target tissues to the action of this hormone. About one third of type II diabetic patients are treated with oral hypoglycemic agents to stimulate insulin secretion. These drugs however risk inducing hypoglycemia and, over time, lose their efficacy. An alternative treatment is the use of glucagon-like peptide-1 (GLP-1), a gut peptidic hormone with a strong insulinotropic activity. Its activity depends of the presence of normal blood glucose concentrations and therefore does not risk inducing hypoglycemia. GLP-1 can correct hyperglycemia in diabetic patients, even in those no longer responding to hypoglycemic agents. Because it is a peptide, GLP-1 must be administered by injection; this may prevent its wide therapeutic use. Here we propose to use cell lines genetically engineered to secrete a mutant form of GLP-1 which has a longer half-life in vivo but which is as potent as the wild-type peptide. The genetically engineered cells are then encapsulated in semi-permeable hollow fibers for implantation in diabetic hosts for constant, long-term, in situ delivery of the peptide. This approach may be a novel therapy for type II diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Sensing of bacterial products via Toll-like receptors is critical to maintain gut immune homeostasis. The Toll-Interacting Protein (Tollip) inhibits downstream signaling through the IL-1 receptor, TLR-2 and TLR-4. Here,we aimed to address the role of Tollip in acute and chronic inflammatory responses in the gut. MATERIAL AND METHODS: WT or Tollip-deficient mice were exposed to dextran sulfate sodium (DSS) 1.5% in the drinking water during 7 days. To generate bone-marrow chimeras, WT or Tollip deficient mice were 900-rads irradiated, transplanted with WT or Tollip deficient bone-marrow cells and challenged with DSS 2-3 months after transplantation. IL-10 deficient mice were bred with Tollip deficient mice and colitis was compared at various time points. RESULTS: Upon DSS exposure, Tollip-deficient mice had increased body weight loss and increased pro-inflammatory cytokine expression compared to WT controls. Challenge of bone-marrow chimeras showed that colitis susceptibility was also increased when Tollip deficiency was restricted to non-hematopoietic cells. DSS-exposure lead to a disorganized distribution of zona-occludens-1, a tight junction marker and increased number of apoptotic, cleaved caspase 3 positive, epithelial cells in Tollip-deficient compared to WT mice. Chronic colitis was also affected by Tollip deficiency as Tollip/IL-10 deficient mice had more severe histological stigmata of colitis and higher IL-17 expression than IL-10 deficient controls. CONCLUSION: Tollip in non-hematopoietic cells is critical for adequate response to a chemical-induced stress in the gut and to hamper chronic bacteria-driven colitis. Modulation of epithelial cell integrity via Tollip likely contributes to the observed defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (KNS1) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (Knittler et al., 1995). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of KNS1, arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of KNS1 upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of KNS1and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-KNS1complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rat pancreatic alpha- and beta-cells are critically dependent on hormonal signals generating cyclic AMP (cAMP) as a synergistic messenger for nutrient-induced hormone release. Several peptides of the glucagon-secretin family have been proposed as physiological ligands for cAMP production in beta-cells, but their relative importance for islet function is still unknown. The present study shows expression at the RNA level in beta-cells of receptors for glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide I(7-36) amide (GLP-I), while RNA from islet alpha-cells hybridized only with GIP receptor cDNA. Western blots confirmed that GLP-I receptors were expressed in beta-cells and not in alpha-cells. Receptor activity, measured as cellular cAMP production after exposing islet beta-cells for 15 min to a range of peptide concentrations, was already detected using 10 pmol/l GLP-I and 50 pmol/l GIP but required 1 nmol/l glucagon. EC50 values of GLP-I- and GIP-induced cAMP formation were comparable (0.2 nmol/l) and 45-fold lower than the EC50 of glucagon (9 nmol/l). Maximal stimulation of cAMP production was comparable for the three peptides. In purified alpha-cells, 1 nmol/l GLP-I failed to increase cAMP levels, while 10 pmol/l to 10 nmol/l GIP exerted similar stimulatory effects as in beta-cells. In conclusion, these data show that stimulation of glucagon, GLP-I, and GIP receptors in rat beta-cells causes cAMP production required for insulin release, while adenylate cyclase in alpha-cells is positively regulated by GIP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potentiation of glucose-induced insulin secretion by intestinal factors has been described for many years. Today, two major peptides with potent insulinotropic action have been recognized: gastric inhibitory peptide and truncated forms of glucagon-like peptide I, GLP-I(7-37) or the related GLP-I(7-36)amide. These hormones have specific beta-cell receptors that are coupled to production of cAMP and activation of cAMP-dependent protein kinase. Elevation in intracellular cAMP levels is required to mediate the glucoincretin effect of these hormones: the potentiation of insulin secretion in the presence of stimulatory concentrations of glucose. In addition, circulating glucoincretins maintain basal levels of cAMP, which are necessary to keep beta-cells in a glucose-competent state. Interactions between glucoincretin signaling and glucose-induced insulin secretion may result from the phosphorylation of key elements of the glucose signaling pathway by cAMP-dependent protein kinase. These include the ATP-dependent K+ channel, the Ca++ channel, or elements of the secretory machinery itself. In NIDDM, the glucoincretin effect is reduced. However, basal or stimulated gastric inhibitory peptide and glucagon-like peptide I levels are normal or even elevated, suggesting that signals induced by these hormones on the beta-cells are probably altered. At pharmacological doses, infusion of glucagon-like peptide I but not gastric inhibitory peptide, can ameliorate postprandial insulin secretory response in NIDDM patients. Agonists of the glucagon-like peptide I receptor have been proposed as new therapeutic agents in NIDDM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oligomeric state of BAFF (B cell activing factor), a tumor necrosis factor (TNF) family cytokine that plays a critical role in B cell development and survival, has been the subject of recent debate. Myc-tagged BAFF starting at residue Gln136 was previously reported to crystallize as trimers at pH 4.5, whereas a histidine-tagged construct of BAFF, starting at residue Ala134, formed a virus-like cluster containing 60 monomers when crystallized at pH 9.0. The formation of the BAFF 60-mer was pH dependent, requiring pH >or= 7.0. More recently, 60-mer formation was suggested to be artificially induced by the histidine tag, and it was proposed that BAFF, like all other TNF family members, is trimeric. We report here that a construct of BAFF with no amino-terminal tag (Ala134-BAFF) can form a 60-mer in solution. Using size exclusion chromatography and static light scattering to monitor trimer to 60-mer ratios in BAFF preparations, we find that 60-mer formation is pH-dependent and requires histidine 218 within the DE loop of BAFF. Biacore measurements established that the affinity of Ala134-BAFF for the BAFF receptor BAFFR/BR3 is similar to that of myc-Gln136-BAFF, which is exclusively trimeric in solution. However, Ala134-BAFF is more efficacious than myc-Gln136-BAFF in inducing B cell proliferation in vitro. We additionally show that BAFF that is processed and secreted by 293T cells transfected with full-length BAFF, or by a histiocytic lymphoma cell line (U937) that expresses BAFF endogenously, forms a pH-dependent 60-mer in solution. Our results indicate that the formation of the 60-mer in solution by the BAFF extracellular domain is an intrinsic property of the protein, and therefore that this more active form of BAFF may be physiologically relevant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown recently to release small molecules, such as the amino acids l-glutamate and d-serine as "gliotransmitters," which directly control the efficacy of adjacent synapses. However, it is still controversial whether gliotransmitters are released from a cytosolic pool or by Ca(2+)-dependent exocytosis from secretory vesicles, i.e., by a mechanism similar to the release of synaptic vesicles in synapses. Here we report that rat cortical astrocytes contain storage vesicles that display morphological and biochemical features similar to neuronal synaptic vesicles. These vesicles share some, but not all, membrane proteins with synaptic vesicles, including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) synaptobrevin 2, and contain both l-glutamate and d-serine. Furthermore, they show uptake of l-glutamate and d-serine that is driven by a proton electrochemical gradient. d-Serine uptake is associated with vesicle acidification and is dependent on chloride. Whereas l-serine is not transported, serine racemase, the synthesizing enzyme for d-serine, is anchored to the membrane of the vesicles, allowing local generation of d-serine. Finally, we reveal a previously unexpected mutual vesicular synergy between d-serine and l-glutamate filling in glia vesicles. We conclude that astrocytes contain vesicles capable of storing and releasing d-serine, l-glutamate, and most likely other neuromodulators in an activity-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine secretory IgA (SIgA), recently identified in colostrum, was shown to be homologous to human SIgA by immunologic cross-reaction. A quantitative study indicated that bovine SIgA, a minor component of colostrum, is a major immunoglobulin in most other external secretions including saliva, spermatic fluid, lacrimal, nasal and gastrointestinal secretions. SIgA was isolated from saliva. The free form of secretory component was found to be abundant in milk. A normal lactating cow produces about 1.2 g of this protein per day. Two forms of IgA were identified in serum: a normal serum IgA with no secretory antigenic determinant, and a small amount of SIgA. In vitro synthesis of SIgA by the salivary gland was studied by tissue cultures with incorporation of labeled amino acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA double strand breaks (DSBs) are mainly repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ). These breaks pose severe threats to genome integrity but can also be necessary intermediates of normal cellular processes such as immunoglobulin class switch recombination (CSR). During CSR, DSBs are produced in the G1 phase of the cell cycle and are repaired by the classical NHEJ machinery. By studying B lymphocytes derived from patients with Cornelia de Lange Syndrome, we observed a strong correlation between heterozygous loss-of-function mutations in the gene encoding the cohesin loading protein NIPBL and a shift toward the use of an alternative, microhomology-based end joining during CSR. Furthermore, the early recruitment of 53BP1 to DSBs was reduced in the NIPBL-deficient patient cells. Association of NIPBL deficiency and impaired NHEJ was also observed in a plasmid-based end-joining assay and a yeast model system. Our results suggest that NIPBL plays an important and evolutionarily conserved role in NHEJ, in addition to its canonical function in sister chromatid cohesion and its recently suggested function in HR.